transcriptional unit
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 20)

H-INDEX

50
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yogesh Taparia ◽  
Achintya Kumar Dolui ◽  
Sammy Boussiba ◽  
Inna Khozin-Goldberg

CRISPR/Cas9-mediated genome editing has been demonstrated in the model diatom P. tricornutum, yet the currently available genetic tools do not combine the various advantageous features into a single, easy-to-assemble, modular construct that would allow the multiplexed targeting and creation of marker-free genome-edited lines. In this report, we describe the construction of the first modular two-component transcriptional unit system expressing SpCas9 from a diatom episome, assembled using the Universal Loop plasmid kit for Golden Gate assembly. We compared the editing efficiency of two constructs with orthogonal promoter-terminator combinations targeting the StLDP gene, encoding the major lipid droplet protein of P. tricornutum. Multiplexed targeting of the StLDP gene was confirmed via PCR screening, and lines with homozygous deletions were isolated from primary exconjugants. An editing efficiency ranging from 6.7 to 13.8% was observed in the better performing construct. Selected gene-edited lines displayed growth impairment, altered morphology, and the formation of lipid droplets during nutrient-replete growth. Under nitrogen deprivation, oversized lipid droplets were observed; the recovery of cell proliferation and degradation of lipid droplets were impaired after nitrogen replenishment. The results are consistent with the key role played by StLDP in the regulation of lipid droplet size and lipid homeostasis.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1985
Author(s):  
Madhan Mohan Chellappa ◽  
Sohini Dey ◽  
Dinesh Chandra Pathak ◽  
Asmita Singh ◽  
Narayan Ramamurthy ◽  
...  

Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.


2021 ◽  
Vol 22 (17) ◽  
pp. 9647
Author(s):  
Epameinondas Tsagogiannis ◽  
Elpiniki Vandera ◽  
Alexandra Primikyri ◽  
Stamatia Asimakoula ◽  
Andreas G. Tzakos ◽  
...  

The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis–Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg−1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.


Author(s):  
Zhi Fang ◽  
Xiang Wang ◽  
Xiaoran Sun ◽  
Wenquan Hu ◽  
Qing R. Miao

Endothelial cell (EC), consisting of the innermost cellular layer of all types of vessels, is not only a barrier composer but also performing multiple functions in physiological processes. It actively controls the vascular tone and the extravasation of water, solutes, and macromolecules; modulates circulating immune cells as well as platelet and leukocyte recruitment/adhesion and activation. In addition, EC also tightly keeps coagulation/fibrinolysis balance and plays a major role in angiogenesis. Therefore, endothelial dysfunction contributes to the pathogenesis of many diseases. Growing pieces of evidence suggest that histone protein acetylation, an epigenetic mark, is altered in ECs under different conditions, and the acetylation status change at different lysine sites on histone protein plays a key role in endothelial dysfunction and involved in hyperglycemia, hypertension, inflammatory disease, cancer and so on. In this review, we highlight the importance of histone acetylation in regulating endothelial functions and discuss the roles of histone acetylation across the transcriptional unit of protein-coding genes in ECs under different disease-related pathophysiological processes. Since histone acetylation changes are conserved and reversible, the knowledge of histone acetylation in endothelial function regulation could provide insights to develop epigenetic interventions in preventing or treating endothelial dysfunction-related diseases.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anna Nagy-Staron ◽  
Kathrin Tomasek ◽  
Caroline Caruso Carter ◽  
Elisabeth Sonnleitner ◽  
Bor Kavčič ◽  
...  

Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.


2021 ◽  
Author(s):  
Anna Nagy-Staroń ◽  
Kathrin Tomasek ◽  
Caroline Caruso Carter ◽  
Elisabeth Sonnleitner ◽  
Bor Kavčič ◽  
...  

Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks.


2020 ◽  
Author(s):  
Sabrina Oeser ◽  
Thomas Wallner ◽  
Nils Schuergers ◽  
Annegret Wilde ◽  
Lenka Bucinska ◽  
...  

Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibres that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. The transcription of the minor pilin genes pilA5, pilA6 and pilA9-pilA11 is inversely regulated in response to different conditions. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Microarray analysis demonstrated that the transcription levels of known and newly predicted minor pilin genes change in response to surface contact. A total of 120 genes were determined to have altered transcription between planktonic and surface growth. Among these genes, 13 are located on the pSYSM plasmid. The results of our study indicate that different minor pilins facilitate distinct pilus functions.


2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Lena Schaffert ◽  
Lucas Jacob ◽  
Susanne Schneiker-Bekel ◽  
Marcus Persicke ◽  
Camilla März ◽  
...  

ABSTRACT The pSETT4 vector integrates into the Actinoplanes sp. SE50/110 chromosome via the bacteriophage φC31 integrase and allows cloning of a gene of interest by Golden Gate assembly (BsaI). T4 terminators surround the expression cassette to isolate the transcriptional unit and to prevent antisense transcription. The system can be used in other Actinomycetales by exchanging the promoter.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1020
Author(s):  
Yujia Yang ◽  
Yingqiu Zheng ◽  
Lina Sun ◽  
Muyan Chen

Organisms respond to severe environmental changes by entering into hypometabolic states, minimizing their metabolic rates, suspending development and reproduction, and surviving critical ecological changes. They come back to an active lifestyle once the environmental conditions are conducive. Marine invertebrates live in the aquatic environment and adapt to environmental changes in their whole life. Sea cucumbers and sponges are only two recently known types of marine organisms that aestivate in response to temperature change. Sea cucumber has become an excellent model organism for studies of environmentally-induced aestivation by marine invertebrates. DNA methylation, the most widely considered epigenetic marks, has been reported to contribute to phenotypic plasticity in response to environmental stress in aquatic organisms. Most of methylation-related enzymes, including DNA methyltransferases, Methyl-CpG binding domain proteins, and DNA demethylases, were up-regulated during aestivation. We conducted high-resolution whole-genome bisulfite sequencing of the intestine from sea cucumber at non-aestivation and deep-aestivation stages. Further DNA methylation profile analysis was also conducted across the distinct genomic features and entire transcriptional units. A different elevation in methylation level at internal exons was observed with clear demarcation of intron/exon boundaries during transcriptional unit scanning. The lowest methylation level occurs in the first exons, followed by the last exons and the internal exons. A significant increase in non-CpG methylation (CHG and CHH) was observed within the intron and mRNA regions in aestivation groups. A total of 1393 genes were annotated within hypermethylated DMRs (differentially methylated regions), and 749 genes were annotated within hypomethylated DMRs. Differentially methylated genes were enriched in the mRNA surveillance pathway, metabolic pathway, and RNA transport. Then, 24 hypermethylated genes and 15 hypomethylated genes were Retrovirus-related Pol polyprotein from transposon (RPPT) genes. This study provides further understanding of epigenetic control on environmental induced hypometabolism in aquatic organisms.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Sarah E. Avery ◽  
Susannah P. Ruzbarsky ◽  
Amanda M. Hise ◽  
Harold J. Schreier

ABSTRACT Acute hepatopancreatic necrosis disease (AHPND) is caused by PirAB toxin-producing Vibrio parahaemolyticus and has devastated the global shrimp aquaculture industry. One approach for preventing the growth of AHPND-producing Vibrio spp. is through the application of beneficial bacteria capable of inhibiting these pathogens. In this study, we focused on the inhibitory activity of Bacillus inaquosorum strain T1, which hinders V. parahaemolyticus growth in coculture experiments in a density-dependent manner; inhibition was also observed using cell-free supernatants from T1 stationary-phase cultures. Using mariner-based transposon mutagenesis, 17 mutants having a complete or partial loss of inhibitory activity were identified. Of those displaying a total loss of activity, 13 had insertions within a 42.6-kb DNA region comprising 15 genes whose deduced products were homologous to nonribosomal polypeptide synthetases (NRPSs), polyketide synthases (PKSs), and related activities, which were mapped as one transcriptional unit. Mutants with partial activity contained insertions in spo0A and oppA, indicating stationary-phase control. The levels of expression of NRPS and PKS lacZ transcriptional fusions were negligible during growth and were the highest during early stationary phase. Inactivation of sigH resulted in a loss of inhibitor activity, indicating a role for σH in transcription. Disruption of abrB resulted in NRPS and PKS gene overexpression during growth as well as enhanced growth inhibition. Our characterization of the expression and control of an NRPS-PKS gene cluster in B. inaquosorum T1 provides an understanding of the factors involved in inhibitor production, enabling this strain’s development for use as a tool against AHPND-causing Vibrio pathogens in shrimp aquaculture. IMPORTANCE The shrimp aquaculture industry has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND), resulting in significant financial losses annually. AHPND is caused by strains of the bacterial pathogen Vibrio parahaemolyticus, and treatment of AHPND involves the use of antibiotics, which leads to a rise in the number of antibiotic-resistant strains. Alternative treatments include the application of beneficial microorganisms having inhibitory activities against pathogens causing AHPND. In this study, we examined the ability of Bacillus inaquosorum strain T1 to inhibit the growth of an AHPND-causing Vibrio strain, and we show that this activity involves a gene cluster associated with antibacterial compound production. We found that gene expression is under stationary-phase control and that enhanced activity occurs upon inactivation of a global transition state regulator. Our approach for understanding the factors involved in producing B. inaquosorum strain T1 inhibitory activity will allow for the development of this strain as a tool for AHPND prevention and treatment.


Sign in / Sign up

Export Citation Format

Share Document