p gene
Recently Published Documents


TOTAL DOCUMENTS

371
(FIVE YEARS 88)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 923
Author(s):  
Giulia Pesce ◽  
Frank Gondelaud ◽  
Denis Ptchelkine ◽  
Juliet F. Nilsson ◽  
Christophe Bignon ◽  
...  

Henipaviruses are severe human pathogens within the Paramyxoviridae family. Beyond the P protein, the Henipavirus P gene also encodes the V and W proteins which share with P their N-terminal, intrinsically disordered domain (NTD) and possess a unique C-terminal domain. Henipavirus W proteins antagonize interferon (IFN) signaling through NTD-mediated binding to STAT1 and STAT4, and prevent type I IFN expression and production of chemokines. Structural and molecular information on Henipavirus W proteins is lacking. By combining various bioinformatic approaches, we herein show that the Henipaviruses W proteins are predicted to be prevalently disordered and yet to contain short order-prone segments. Using limited proteolysis, differential scanning fluorimetry, analytical size exclusion chromatography, far-UV circular dichroism and small-angle X-ray scattering, we experimentally confirmed their overall disordered nature. In addition, using Congo red and Thioflavin T binding assays and negative-staining transmission electron microscopy, we show that the W proteins phase separate to form amyloid-like fibrils. The present study provides an additional example, among the few reported so far, of a viral protein forming amyloid-like fibrils, therefore significantly contributing to enlarge our currently limited knowledge of viral amyloids. In light of the critical role of the Henipavirus W proteins in evading the host innate immune response and of the functional role of phase separation in biology, these studies provide a conceptual asset to further investigate the functional impact of the phase separation abilities of the W proteins.


F1000Research ◽  
2022 ◽  
Vol 9 ◽  
pp. 1159
Author(s):  
Qian (Vicky) Wu ◽  
Wei Sun ◽  
Li Hsu

Gene expression data have been used to infer gene-gene networks (GGN) where an edge between two genes implies the conditional dependence of these two genes given all the other genes. Such gene-gene networks are of-ten referred to as gene regulatory networks since it may reveal expression regulation. Most of existing methods for identifying GGN employ penalized regression with L1 (lasso), L2 (ridge), or elastic net penalty, which spans the range of L1 to L2 penalty. However, for high dimensional gene expression data, a penalty that spans the range of L0 and L1 penalty, such as the log penalty, is often needed for variable selection consistency. Thus, we develop a novel method that em-ploys log penalty within the framework of an earlier network identification method space (Sparse PArtial Correlation Estimation), and implement it into a R package space-log. We show that the space-log is computationally efficient (source code implemented in C), and has good performance comparing with other methods, particularly for networks with hubs.Space-log is open source and available at GitHub, https://github.com/wuqian77/SpaceLog


2021 ◽  
Author(s):  
LaTasha R Holden ◽  
Rasheda Haughbrook ◽  
Sara Ann Hart

Gene–environment processes tell us how genes and environments work together to influence children in schools. One type of gene–environment process that has been extensively studied using behavioral genetics methods is a gene-by-environment interaction. A gene-by-environment interaction shows us when the effect of your context differs depending on your genes, or vice versa, when the effect of your genes differs depending on your context. Developmental behavioral geneticists interested in children’s school achievement have examined many different contexts within the gene-by-environment interaction model, including contexts measured from within children’s home and school environments. However, this work has been overwhelmingly focused on White children, leaving us with non-inclusive scientific evidence. This can lead to detrimental outcomes when we overgeneralize this non-inclusive scientific evidence to racialized groups. We conclude with a call to include racialized children in more research samples.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1342
Author(s):  
Esther C. Gallegos-Cabriales ◽  
Ernesto Rodriguez-Ayala ◽  
Hugo A. Laviada-Molina ◽  
Edna J. Nava-Gonzalez ◽  
Rocío A. Salinas-Osornio ◽  
...  

We previously reported preliminary characterization of adipose tissue (AT) dysfunction through the adiponectin/leptin ratio (ALR) and fasting/postprandial (F/P) gene expression in subcutaneous (SQ) adipose tissue (AT) biopsies obtained from participants in the GEMM study, a precision medicine research project. Here we present integrative data replication of previous findings from an increased number of GEMM symptom-free (SF) adults (N = 124) to improve characterization of early biomarkers for cardiovascular (CV)/immunometabolic risk in SF adults with AT dysfunction. We achieved this goal by taking advantage of the rich set of GEMM F/P 5 h time course data and three tissue samples collected at the same time and frequency on each adult participant (F/P blood, biopsies of SQAT and skeletal muscle (SKM)). We classified them with the presence/absence of AT dysfunction: low (<1) or high (>1) ALR. We also examined the presence of metabolically healthy (MH)/unhealthy (MUH) individuals through low-grade chronic subclinical inflammation (high sensitivity C-reactive protein (hsCRP)), whole body insulin sensitivity (Matsuda Index) and Metabolic Syndrome criteria in people with/without AT dysfunction. Molecular data directly measured from three tissues in a subset of participants allowed fine-scale multi-OMIC profiling of individual postprandial responses (RNA-seq in SKM and SQAT, miRNA from plasma exosomes and shotgun lipidomics in blood). Dynamic postprandial immunometabolic molecular endophenotypes were obtained to move towards a personalized, patient-defined medicine. This study offers an example of integrative translational research, which applies bench-to-bedside research to clinical medicine. Our F/P study design has the potential to characterize CV/immunometabolic early risk detection in support of precision medicine and discovery in SF individuals.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jasmin Dionne Haslbauer ◽  
Anna Stalder ◽  
Carl Zinner ◽  
Stefano Bassetti ◽  
Kirsten Diana Mertz ◽  
...  

<b><i>Introduction:</i></b> Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19. <b><i>Methods:</i></b> Lung tissue from COVID-19 autopsies (<i>n</i> = 27) and controls (<i>n</i> = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, <i>in-situ</i> hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for <i>ACE2, ACE</i> and <i>TMPRSS2</i> was performed. <b><i>Results:</i></b> Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of <i>ACE2</i> gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/10<sup>6</sup> RNase P-gene copies) and decreased <i>ACE/ACE2</i>-expression ratios (4.58 vs. 11.07) than patients without. <i>TMPRSS2</i> expression was significantly (1.76-fold) higher in COVID-19 patients than controls. <b><i>Conclusion:</i></b> Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jade Lee Lee Teng ◽  
Ulrich Wernery ◽  
Hwei Huih Lee ◽  
Joshua Fung ◽  
Sunitha Joseph ◽  
...  

Since the emergence of Middle East Respiratory Syndrome (MERS) in 2012, there have been a surge in the discovery and evolutionary studies of viruses in dromedaries. Here, we investigated a herd of nine dromedary calves from Umm Al Quwain, the United Arab Emirates that developed respiratory signs. Viral culture of the nasal swabs from the nine calves on Vero cells showed two different types of cytopathic effects (CPEs), suggesting the presence of two different viruses. Three samples showed typical CPEs of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in Vero cells, which was confirmed by partial RdRp gene sequencing. Complete genome sequencing of the three MERS-CoV strains showed that they belonged to clade B3, most closely related to another dromedary MERS-CoV isolate previously detected in Dubai. They also showed evidence of recombination between lineages B4 and B5 in ORF1ab. Another three samples showed non-typical CPEs of MERS-CoV with cell rounding, progressive degeneration, and detachment. Electron microscopy revealed spherical viral particles with peplomers and diameter of about 170nm. High-throughput sequencing and metagenomic analysis showed that the genome organization (3'-N-P-M-F-HN-L-5') was typical of paramyxovirus. They possessed typical genome features similar to other viruses of the genus Respirovirus, including a conserved motif 323FAPGNYALSYAM336 in the N protein, RNA editing sites 5'-717AAAAAAGGG725-3', and 5'-1038AGAAGAAAGAAAGG1051-3' (mRNA sense) in the P gene with multiple polypeptides coding capacity, a nuclear localization signal sequence 245KVGRMYSVEYCKQKIEK261 in the M protein, a conserved sialic acid binding motif 252NRKSCS257 in the HN protein, conserved lengths of the leader (55nt) and trailer (51nt) sequences, total coding percentages (92.6–93.4%), gene-start (AGGANNAAAG), gene-end (NANNANNAAAAA), and trinucleotide intergenic sequences (CTT, mRNA sense). Phylogenetic analysis of their complete genomes showed that they were most closely related to bovine parainfluenza virus 3 (PIV3) genotype C strains. In the phylogenetic tree constructed using the complete L protein, the branch length between dromedary camel PIV3 (DcPIV3) and the nearest node is 0.04, which is &gt;0.03, the definition used for species demarcation in the family Paramyxoviridae. Therefore, we show that DcPIV3 is a novel species of the genus Respirovirus that co-circulated with MERS-CoV in a dromedary herd in the Middle East.


2021 ◽  
Vol 1 ◽  
pp. 140
Author(s):  
Peter Jan Vonk ◽  
Robin A. Ohm

Gene integration in mushroom-forming fungi currently occurs by the ectopic integration of a plasmid. The locus of integration is unpredictable and, problematically, this generally results in a high variability in gene expression and phenotypes between the transformants. Here, we developed an approach for targeted gene integration (knock-in) in the basidiomycete Schizophyllum commune by replacing a 75-bp non-coding region of the genome with a selection marker and an arbitrary gene of interest using CRISPR-Cas9 ribonucleoproteins. To assess the suitability of our method, we compared targeted integration and ectopic integration of the gene encoding the red fluorescent protein dTomato. Targeted integration resulted in a higher average fluorescence intensity and less variability between the transformants. This method may be applied to any gene construct and may therefore greatly increase the efficiency of functional gene analysis in S. commune.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260087
Author(s):  
Beatriz Iandra da Silva Ferreira ◽  
Natália Lins da Silva-Gomes ◽  
Wagner Luis da Costa Nunes Pimentel Coelho ◽  
Vanessa Duarte da Costa ◽  
Vanessa Cristine de Souza Carneiro ◽  
...  

The emergence of the COVID-19 pandemic resulted in an unprecedented need for RT-qPCR-based molecular diagnostic testing, placing a strain on the supply chain and the availability of commercially available PCR testing kits and reagents. The effect of limited molecular diagnostics-related supplies has been felt across the globe, disproportionally impacting molecular diagnostic testing in developing countries where acquisition of supplies is limited due to availability. The increasing global demand for commercial molecular diagnostic testing kits and reagents has made standard PCR assays cost prohibitive, resulting in the development of alternative approaches to detect SARS-CoV-2 in clinical specimens, circumventing the need for commercial diagnostic testing kits while mitigating the high-demand for molecular diagnostics testing. The timely availability of the complete SARS-CoV-2 genome in the beginning of the COVID-19 pandemic facilitated the rapid development and deployment of specific primers and standardized laboratory protocols for the molecular diagnosis of COVID-19. An alternative method offering a highly specific manner of detecting and genotyping pathogens within clinical specimens is based on the melting temperature differences of PCR products. This method is based on the melting temperature differences between purine and pyrimidine bases. Here, RT-qPCR assays coupled with a High Resolution Melting analysis (HRM-RTqPCR) were developed to target different regions of the SARS-CoV-2 genome (RdRp, E and N) and an internal control (human RNAse P gene). The assays were validated using synthetic sequences from the viral genome and clinical specimens (nasopharyngeal swabs, serum and saliva) of sixty-five patients with severe or moderate COVID-19 from different states within Brazil; a larger validation group than that used in the development to the commercially available TaqMan RT-qPCR assay which is considered the gold standard for COVID-19 testing. The sensitivity of the HRM-RTqPCR assays targeting the viral N, RdRp and E genes were 94.12, 98.04 and 92.16%, with 100% specificity to the 3 SARS-CoV-2 genome targets, and a diagnostic accuracy of 95.38, 98.46 and 93.85%, respectively. Thus, HRM-RTqPCR emerges as an attractive alternative and low-cost methodology for the molecular diagnosis of COVID-19 in restricted-budget laboratories.


2021 ◽  
Vol 902 (1) ◽  
pp. 012052
Author(s):  
A Primasari ◽  
J Efendy ◽  
P W Prihandini

Abstract POBA cattle is a crossbred cattle from Peranakan Ongole (PO) and Bali cattle, which is developed by the Beef Cattle Research Institute (BCRI), Ministry of Agriculture of the Republic of Indonesia. This study aimed to identify the genetic and phenotypic characteristics of POBA cattle raised in the BCRI. Genetic diversity of FSH-β gene was also determined in order to identify a possible marker for reproductive status in POBA cattle. Rambon cattle collected from Banyuwangi regency were used as comparison. A 313 bp fragment of the FSH-β gene was amplified using the polymerase chain reaction (PCR). The PCR products were sequenced and aligned to detect polymorphism. As results, a polymorphism (SNP g.2583C/T) in the FSH-β gene, which produced three genotypes (TT, CC, and CT) was detected. The frequency of each allele was 0.13 (allele C) and 0.87 (allele T). However, the FSH-β gene polymorphism did not significantly affect sperm quality, body weight, body size, and cervical condition of POBA cattle.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2168
Author(s):  
Dong-Sheng Luo ◽  
Zhi-Jian Zhou ◽  
Xing-Yi Ge ◽  
Hervé Bourhy ◽  
Zheng-Li Shi ◽  
...  

Rhabdoviridae is the most diverse family of the negative, single-stranded RNA viruses, which includes 40 ecologically different genera that infect plants, insects, reptiles, fishes, and mammals, including humans, and birds. To date, only a few bird-related rhabdoviruses among the genera Sunrhavirus, Hapavirus, and Tupavirus have been described and analyzed at the molecular level. In this study, we characterized seven additional and previously unclassified rhabdoviruses, which were isolated from various bird species collected in Africa during the 1960s and 1970s. Based on the analysis of their genome sequences obtained by next generation sequencing, we observed a classical genomic structure, with the presence of the five canonical rhabdovirus genes, i.e., nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and polymerase (L). In addition, different additional open reading frames which code putative proteins of unknown function were identified, with the common presence of the C and the SH proteins, within the P gene and between the M and G genes, respectively. Genetic comparisons and phylogenetic analysis demonstrated that these seven bird-related rhabdoviruses could be considered as putative new species within the genus Sunrhavirus, where they clustered into a single group (named Clade III), a companion to two other groups that encompass mainly insect-related viruses. The results of this study shed light on the high diversity of the rhabdoviruses circulating in birds, mainly in Africa. Their close relationship with other insect-related sunrhaviruses raise questions about their potential role and impact as arboviruses that affect bird communities.


Sign in / Sign up

Export Citation Format

Share Document