scholarly journals Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression.

1991 ◽  
Vol 65 (5) ◽  
pp. 2666-2675 ◽  
Author(s):  
M Gao ◽  
D M Knipe
2008 ◽  
Vol 83 (1) ◽  
pp. 128-139 ◽  
Author(s):  
Thomas W. Bastian ◽  
Stephen A. Rice

ABSTRACT Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.


2015 ◽  
Vol 89 (19) ◽  
pp. 9841-9852 ◽  
Author(s):  
Kathryne E. Taylor ◽  
Karen L. Mossman

ABSTRACTIt has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to thetrans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment.IMPORTANCEWhile the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV.


2002 ◽  
Vol 76 (4) ◽  
pp. 1548-1558 ◽  
Author(s):  
Dool-Bboon Kim ◽  
Susan Zabierowski ◽  
Neal A. DeLuca

ABSTRACT The start site regions of late genes of herpes simplex virus type 1 are similar to the eukaryotic initiator sequence (Inr), have been shown to affect the levels of expression, and may also play a role in transcription activation by the viral activator ICP4. A series of linker-scanning mutations spanning the start site of transcription and several downstream mutations in the true late gC promoter were analyzed in reconstituted in vitro transcription reactions with and without ICP4, as well as in the context of the viral genome during infection. The nucleotide contacts previously found to be important for Inr function were also found to be important for optimal induction by ICP4. While the Inr had a substantial effect on the accumulation of gC RNA during infection, no other sequence downstream of the TATA box to +124 had a significant effect on levels of expression during infection. Therefore, these studies suggest that TATA box and the Inr are the only cis-acting elements required to achieve optimal expression of gC, and that the high levels of late-gene transcription may be largely due to the induction by ICP4, functioning through the Inr element.


Sign in / Sign up

Export Citation Format

Share Document