scholarly journals Identification of Sequences in Herpes Simplex Virus Type 1 ICP22 That Influence RNA Polymerase II Modification and Viral Late Gene Expression

2008 ◽  
Vol 83 (1) ◽  
pp. 128-139 ◽  
Author(s):  
Thomas W. Bastian ◽  
Stephen A. Rice

ABSTRACT Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.

2002 ◽  
Vol 76 (4) ◽  
pp. 1548-1558 ◽  
Author(s):  
Dool-Bboon Kim ◽  
Susan Zabierowski ◽  
Neal A. DeLuca

ABSTRACT The start site regions of late genes of herpes simplex virus type 1 are similar to the eukaryotic initiator sequence (Inr), have been shown to affect the levels of expression, and may also play a role in transcription activation by the viral activator ICP4. A series of linker-scanning mutations spanning the start site of transcription and several downstream mutations in the true late gC promoter were analyzed in reconstituted in vitro transcription reactions with and without ICP4, as well as in the context of the viral genome during infection. The nucleotide contacts previously found to be important for Inr function were also found to be important for optimal induction by ICP4. While the Inr had a substantial effect on the accumulation of gC RNA during infection, no other sequence downstream of the TATA box to +124 had a significant effect on levels of expression during infection. Therefore, these studies suggest that TATA box and the Inr are the only cis-acting elements required to achieve optimal expression of gC, and that the high levels of late-gene transcription may be largely due to the induction by ICP4, functioning through the Inr element.


2021 ◽  
Author(s):  
Adam W Whisnant ◽  
Oliver Mathias Dyck Dionisi ◽  
Arnhild Grothey ◽  
Julia M Rappold ◽  
Ana Luiza Marante ◽  
...  

Transcriptional activity of RNA polymerase II (Pol II) is orchestrated by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes Simplex Virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) of the Pol II CTD by targeting CDK9. The functional implications of this are poorly understood. Here, we report that HSV-1 also induces a global loss of serine 7 phosphorylation (pS7). This effect was dependent on the expression of the two viral immediate-early proteins, ICP22 and ICP27. While lytic HSV-1 infection results in efficient Pol II degradation late in infection, we show that pS2/S7 loss precedes the drop in Pol II level. Interestingly, mutation of the RPB1 polyubiquitination site mutation K1268, which prevents proteasomal RPB1 degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained much higher overall RPB1 protein levels even at late times of infection, indicating that this pathway mediates bulk Pol II protein loss late in infection but is not involved in early CTD dysregulation. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for production of viral proteins, with Ser2 facilitating viral immediate-early gene expression and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments by immunofluorescence. These data expand the known means that HSV-1 employs to create pro-viral transcriptional environments at the expense of host responses.


2007 ◽  
Vol 82 (6) ◽  
pp. 2661-2672 ◽  
Author(s):  
Roger D. Everett ◽  
Carlos Parada ◽  
Philippe Gripon ◽  
Hüseyin Sirma ◽  
Anne Orr

ABSTRACT Herpes simplex virus type 1 (HSV-1) mutants that fail to express the viral immediate-early protein ICP0 have a pronounced defect in viral gene expression and plaque formation in limited-passage human fibroblasts. ICP0 is a RING finger E3 ubiquitin ligase that induces the degradation of several cellular proteins. PML, the organizer of cellular nuclear substructures known as PML nuclear bodies or ND10, is one of the most notable proteins that is targeted by ICP0. Depletion of PML from human fibroblasts increases ICP0-null mutant HSV-1 gene expression, but not to wild-type levels. In this study, we report that depletion of Sp100, another major ND10 protein, results in a similar increase in ICP0-null mutant gene expression and that simultaneous depletion of both proteins complements the mutant virus to a greater degree. Although chromatin assembly and modification undoubtedly play major roles in the regulation of HSV-1 infection, we found that inhibition of histone deacetylase activity with trichostatin A was unable to complement the defect of ICP0-null mutant HSV-1 in either normal or PML-depleted human fibroblasts. These data lend further weight to the hypothesis that ND10 play an important role in the regulation of HSV-1 gene expression.


Sign in / Sign up

Export Citation Format

Share Document