hel cells
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 22)

H-INDEX

32
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Brittany Lewer

<p>The increasingly studied phenomenon of mitochondria transferring between cells contrasts the popular belief that mitochondria reside permanently within their cells of origin. Research has identified this process occurring in many tissues such as brain, lung and more recently within the bone marrow. This project aimed to investigate if mitochondria could be transferred between human erythroblasts, a context not previously studied.  Tissue microenvironments can be modelled using co-culture systems. Fluorescence activated cell sorting and a highly sensitive Allele-Specific-Blocker qPCR assay were used to leverage mitochondrial DNA polymorphisms between co-cultured populations. Firstly, HL-60ρ₀ bone marrow cells, without mitochondrial DNA, deprived of essential nutrients pyruvate and uridine were co-cultured in vitro with HEL cells, a human erythroleukemia. Secondly, HEL cells treated with deferoxamine or cisplatin, were cocultured with parental HL-60 cells in vitro. Lastly, ex vivo co-cultures between erythroblasts differentiated from mononuclear cells in peripheral blood were conducted, where one population was treated with deferoxamine.  Co-culture was able to improve recovery when HL-60ρ₀ cells were deprived of pyruvate and uridine. Improved recovery was similarly detected for HEL cells treated with deferoxamine after co-culture with HL-60 cells. Transfer of mitochondrial DNA did not occur at a detectable level in any co-culture condition tested. The high sensitivity of the allele-specific-blocker qPCR assay required completely pure populations to analyse, however this was not achieved using FACS techniques. In conclusion, results have not demonstrated but cannot exclude the possibility that erythroid cells transfer mitochondria to each other.</p>


2021 ◽  
Author(s):  
◽  
Brittany Lewer

<p>The increasingly studied phenomenon of mitochondria transferring between cells contrasts the popular belief that mitochondria reside permanently within their cells of origin. Research has identified this process occurring in many tissues such as brain, lung and more recently within the bone marrow. This project aimed to investigate if mitochondria could be transferred between human erythroblasts, a context not previously studied.  Tissue microenvironments can be modelled using co-culture systems. Fluorescence activated cell sorting and a highly sensitive Allele-Specific-Blocker qPCR assay were used to leverage mitochondrial DNA polymorphisms between co-cultured populations. Firstly, HL-60ρ₀ bone marrow cells, without mitochondrial DNA, deprived of essential nutrients pyruvate and uridine were co-cultured in vitro with HEL cells, a human erythroleukemia. Secondly, HEL cells treated with deferoxamine or cisplatin, were cocultured with parental HL-60 cells in vitro. Lastly, ex vivo co-cultures between erythroblasts differentiated from mononuclear cells in peripheral blood were conducted, where one population was treated with deferoxamine.  Co-culture was able to improve recovery when HL-60ρ₀ cells were deprived of pyruvate and uridine. Improved recovery was similarly detected for HEL cells treated with deferoxamine after co-culture with HL-60 cells. Transfer of mitochondrial DNA did not occur at a detectable level in any co-culture condition tested. The high sensitivity of the allele-specific-blocker qPCR assay required completely pure populations to analyse, however this was not achieved using FACS techniques. In conclusion, results have not demonstrated but cannot exclude the possibility that erythroid cells transfer mitochondria to each other.</p>


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jing Lin ◽  
Jing Zeng ◽  
Sha Liu ◽  
Xin Shen ◽  
Nan Jiang ◽  
...  

Abstract Background Thrombocytopenia is one of the most common hematological disease that can be life-threatening caused by bleeding complications. However, the treatment options for thrombocytopenia remain limited. Methods In this study, giemsa staining, phalloidin staining, immunofluorescence and flow cytometry were used to identify the effects of 3,3ʹ-di-O-methylellagic acid 4ʹ-glucoside (DMAG), a natural ellagic acid derived from Sanguisorba officinalis L. (SOL) on megakaryocyte differentiation in HEL cells. Then, thrombocytopenia mice model was constructed by X-ray irradiation to evaluate the therapeutic action of DMAG on thrombocytopenia. Furthermore, the effects of DMAG on platelet function were evaluated by tail bleeding time, platelet aggregation and platelet adhesion assays. Next, network pharmacology approaches were carried out to identify the targets of DMAG. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the underling mechanism of DMAG against thrombocytopenia. Finally, molecular docking simulation, molecular dynamics simulation and western blot analysis were used to explore the relationship between DAMG with its targets. Results DMAG significantly promoted megakaryocyte differentiation of HEL cells. DMAG administration accelerated platelet recovery and megakaryopoiesis, shortened tail bleeding time, strengthened platelet aggregation and adhesion in thrombocytopenia mice. Network pharmacology revealed that ITGA2B, ITGB3, VWF, PLEK, TLR2, BCL2, BCL2L1 and TNF were the core targets of DMAG. GO and KEGG pathway enrichment analyses suggested that the core targets of DMAG were enriched in PI3K–Akt signaling pathway, hematopoietic cell lineage, ECM-receptor interaction and platelet activation. Molecular docking simulation and molecular dynamics simulation further indicated that ITGA2B, ITGB3, PLEK and TLR2 displayed strong binding ability with DMAG. Finally, western blot analysis evidenced that DMAG up-regulated the expression of ITGA2B, ITGB3, VWF, p-Akt and PLEK. Conclusion DMAG plays a critical role in promoting megakaryocytes differentiation and platelets production and might be a promising medicine for the treatment of thrombocytopenia. Graphical Abstract


2021 ◽  
Author(s):  
Jing Lin ◽  
Jing Zeng ◽  
Sha Liu ◽  
Xin Shen ◽  
Nan Jiang ◽  
...  

Abstract Background: Thrombocytopenia is one of the most common hematological disease that can be life-threatening caused by bleeding complications. However, the treatment options for thrombocytopenia remain limited. Methods: In this study, giemsa staining, phalloidin staining and flow cytometry were firstly used to identify the effects of 3,3'-Di-O-methylellagic acid 4'-glucoside (DMAG), a natural ellagic acid derived from Sanguisorba officinalis L. (SOL) on megakaryocyte differentiation in HEL cells. Then, thrombocytopenia mice model was constructed by X-ray irradiation to evaluate the therapeutic action of DMAG on thrombocytopenia. Next, network pharmacology approachs were carried out to identify the targets of DMAG. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-ment analyses were performed to elucidate the underling mechanism of DMAG against thrombocytopenia. Finally, Molecular docking simulation, molecular dynamics simulation and western blot analysis were used to explore the relationship between DAMG with its targets.Results: DMAG significantly promoted megakaryocyte differentiation and maturation of HEL cells. DMAG administration accelerated platelet recovery and megakaryopoiesis in thrombocytopenia mice. Network pharmacology revealed that ITGA2B, ITGB3, VWF, PLEK, TLR2, BCL2, BCL2L1 and TNF were the core targets of DMAG. GO and KEGG pathway enrichment analyses suggested that the core targets of DMAG were enriched in PI3K-Akt signaling pathway, hematopoietic cell lineage, ECM-receptor interaction and platelet activation. Molecular docking simulation and molecular dynamics simulation further indicated that ITGA2B, ITGB3, PLEK and TLR2 displayed strong binding ability with DMAG. Finally, western blot analysis evidenced that DMAG up-regulated the expression of ITGA2B, ITGB3, VWF and PLEK. Conclusion: DMAG plays a critical role in promoting megakaryocytes differentiation and platelets production and might be a promising medicine for the treatment of thrombocytopenia.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ying Deng ◽  
Tongtong Ding ◽  
Lulu Deng ◽  
Xiaojiang Hao ◽  
Shuzhen Mu

AbstractZanthoxylum nitidium (Roxb.) DC (Rutaceae) is well known for inhibiting the proliferation of human gastric, liver, kidney and lung cancer cells, though research on its potential use in treating leukaemia is relatively rare. Twenty-six compounds were isolated from the chloroform and petroleum ether extracts of the roots and leaves of Z. nitidium (Zanthoxylum nitidium). They were ( +)-9′-O-transferuloyl-5, 5′-dimethoxylaricriresinol (1), 8-(3′-oxobut-1′-en-1′-yl)-5, 7-dimethoxy-coumarin (2), 5, 7, 8-trimethoxy-coumarin (3), 5-(3′, 3′-dimethyl-2′-butenyloxy)-7, 8-dimethoxy-coumarin (4), 2-(5-methoxy-2-methyl-1H-indol-3-yl) methyl acetate (5), 2′-(5, 6-dihydrochleletrythrine-6-yl) ethyl acetate (6), 6-acetonyldi-hydrochelerythrine (7), 6β-hydroxymethyldihydronitidine (8), bocconoline (9), zanthoxyline (10), O-methylzanthoxyline (11), rhoifoline B (12), N-nornitidine (13), nitidine (14), chelerythrine (15), 4-hydroxyl-7,8-dimethoxy-furoquinoline (16), dictamnine (17), γ-fagarine (18), skimmianine (19), robustine (20), R-( +)-platydesmine (21), 4-methoxyl-1-methyl-2-quinoline (22), 4-methoxy-2-quinolone (23), liriodenine (24), aurantiamide acetate (25), 10-O-demethyl-12-O-methylarnottianamide (26). Four among them, compounds 4 – 6 and 16, were first confirmed in this study by UV, IR, 1D, 2D NMR and HR-ESI–MS spectra. Compounds 1 – 2 and 11 were isolated from Z. nitidium for the first time. Of the assayed compounds, 1, 2, 9, 10, 14, 15 and 24, exhibited good inhibitory activities in the leukaemia cell line HEL, whereas compound 14 (IC50: 3.59 µM) and compound 24 (IC50: 15.95 µM) exhibited potent inhibitory activities. So, to further investigate the possible mechanisms, cell cycle and apoptosis assays were performed, which indicated that compound 14 causes obvious S-phase arrest in HEL cells and induced apoptosis, whereas compound 24 only induced apoptosis. The present results suggested both compounds 14 and 24 are promising potential anti-leukaemia drug candidates.


2021 ◽  
Vol 22 (13) ◽  
pp. 6671
Author(s):  
Tijana Subotički ◽  
Olivera Mitrović Ajtić ◽  
Emilija Živković ◽  
Miloš Diklić ◽  
Dragoslava Đikić ◽  
...  

Background: Chronic inflammation has been recognized in neoplastic disorders, including myeloproliferative neoplasm (MPN), as an important regulator of angiogenesis. Aims: We investigated the influence of vascular endothelial growth factor (VEGF) and pro-inflammatory interleukin-6 (IL-6) on the expression of angiogenic factors, as well as inflammation-related signaling in mononuclear cells (MNC) of patients with MPN and JAK2V617F positive human erythroleukemic (HEL) cells. Results: We found that IL-6 did not change the expression of angiogenic factors in the MNC of patients with MPN and HEL cells. However, IL-6 and the JAK1/2 inhibitor Ruxolitinib significantly increased angiogenic factors—endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor-1 alpha (HIF-1α)—in patients with polycythemia vera (PV). Furthermore, VEGF significantly increased the expression of HIF-1α and eNOS genes, the latter inversely regulated by PI3K and mTOR signaling in the MNC of primary myelofibrosis (PMF). VEGF and inhibitors of inflammatory JAK1/2, PI3K, and mTOR signaling reduced the eNOS protein expression in HEL cells. VEGF also decreased the expression of eNOS and HIF-1α proteins in the MNC of PMF. In contrast, VEGF increased eNOS and HIF-1α protein expression in the MNC of patients with PV, which was mediated by the inflammatory signaling. VEGF increased the level of IL-6 immunopositive MNC of MPN. In summary, VEGF conversely regulated gene and protein expression of angiogenic factors in the MNC of PMF, while VEGF increased angiogenic factor expression in PV mediated by the inflammation-related signaling. Conclusion: The angiogenic VEGF induction of IL-6 supports chronic inflammation that, through positive feedback, further promotes angiogenesis with concomitant JAK1/2 inhibition.


2021 ◽  
Author(s):  
Lamia Lamrani ◽  
Frédéric Adam ◽  
Christelle Soukaseum ◽  
Cécile V. Denis ◽  
Hana Raslova ◽  
...  

Abstract Filamin (FLN) regulates many cell functions through its scaffolding activity cross-linking cytoskeleton and integrins. FLN was shown to inhibit integrin activity, but the exact mechanism remains unclear. Here, we report on the regulation of platelet integrin αIIbβ3 signaling by the FLNa subtype. Three FLNa deletion mutants were overexpressed in the erythro-megakaryocytic leukemic cell line HEL: Del1 which lacks the N-terminal CH1-CH2 domains mediating the FLNa-actin interaction; Del2 lacking the immunoglobulin-like (Ig) repeat 21 which mediates the FLNa-β3 interaction; and Del3 lacking the C-terminal Ig repeat 24, responsible for FLNa dimerization and interaction with the small Rho GTPase involved in actin cytoskeleton reorganisation. Fibrinogen binding to HEL cells in suspension and talin-β3 interaction in cells adherent to immobilized fibrinogen were assessed using the PKC agonist (phorbol 12-myristate 13-acetate) also to activate αIIbβ3. Our results show that FLNa-actin and FLNa-β3 interactions negatively regulate αIIbβ3 activation. Moreover FLNa-actin interaction represses Rac activation, contributing to the negative regulation of αIIbβ3 activation. In contrast, the FLNa dimerization domain which maintains Rho inactive, was found to negatively regulate αIIbβ3 outside-in signaling. We conclude that FLNa negatively controls αIIbβ3 activation by regulating actin polymerization and restraining activation of Rac, as well as outside-in signaling by repressing Rho.


2021 ◽  
Vol 137 ◽  
pp. 111336
Author(s):  
Qun Long ◽  
Xiao Xiao ◽  
Ping Yi ◽  
Yuancui Liu ◽  
Krishnapriya M. Varier ◽  
...  

2021 ◽  
Author(s):  
Ying Deng ◽  
Tongtong Ding ◽  
Lulu Deng ◽  
Xiaojiang Hao ◽  
Shu Zhen Mu

Abstract Zanthoxylum nitidium (Roxb.) DC (Rutaceae) is well known for inhibiting the proliferation of human gastric, liver, kidney and lung cancer cells, though research on its potential use in treating leukaemia is relatively rare. Twenty-six compounds were isolated from the chloroform and petroleum ether extracts of the roots and leaves of Z. nitidium (Zanthoxylum nitidium). They were (+)-9′-O-transferuloyl-5, 5′-dimethoxylaricriresinol (1), 8-(3′-oxobut-1′-en-1′-yl)-5, 7-dimethoxy-coumarin (2), 5, 7, 8-trimethoxy-coumarin (3), 5-(3′, 3′-dimethyl-2′-butenyloxy)-7, 8-dimethoxy-coumarin (4), 2-(5-methoxy-2-methyl-1H-indol-3-yl) methyl acetate (5), 2′-(5, 6-dihydrochleletrythrine-6-yl) ethyl acetate (6), 6-acetonyldi-hydrochelerythrine (7), 6β-hydroxymethyldihydronitidine (8), bocconoline (9), zanthoxyline (10), O-methylzanthoxyline (11), rhoifoline B (12), N-nornitidine (13), nitidine (14), chelerythrine (15), 4-hydroxyl-7,8-dimethoxy-furoquinoline (16), dictamnine (17), γ-fagarine (18), skimmianine (19), robustine (20), R-(+)-platydesmine (21), 4-methoxyl-1-methyl-2-quinoline (22), 4-methoxy-2-quinolone (23), liriodenine (24), aurantiamide acetate (25), 10-O-demethyl-12-O-methylarnottianamide (26). Four among them, compounds 4-6 and 16, were first confirmed in this study by UV, IR, 1D, 2D NMR and HR-ESI-MS spectra. Compounds 1-2 and 11 were isolated from Z. nitidium for the first time. Of the assayed compounds, 1, 2, 9, 10, 14, 15 and 24, exhibited good inhibitory activities in the leukaemia cell line HEL, whereas compound 14 (IC50: 3.59 µM) and compound 24 (IC50: 15.95 µM) exhibited potent inhibitory activities. So, to further investigate the possible mechanisms, cell cycle and apoptosis assays were performed, which indicated that compound 14 causes obvious S-phase arrest in HEL cells and induced apoptosis, whereas compound 24 only induced apoptosis. The present results suggested both compounds 14 and 24 are promising potential anti-leukaemia drug candidates.


Sign in / Sign up

Export Citation Format

Share Document