The amino-terminal functions of the simian virus 40 large T antigen are required to overcome wild-type p53-mediated growth arrest of cells.

1994 ◽  
Vol 68 (3) ◽  
pp. 1334-1341 ◽  
Author(s):  
R S Quartin ◽  
C N Cole ◽  
J M Pipas ◽  
A J Levine
1991 ◽  
Vol 11 (7) ◽  
pp. 3472-3483 ◽  
Author(s):  
K Fukasawa ◽  
G Sakoulas ◽  
R E Pollack ◽  
S Chen

Wild-type (wt) murine p53 has been tested for its ability to block and reverse the transforming effects of simian virus 40 (SV40) large T antigen. Established and precrisis mouse cells overexpressing exogenously introduced wt p53 became resistant to SV40 transformation. The introduction of excess wt p53 into SV40-transformed precrisis cells reverted their transformed phenotype. However, the phenotype of SV40-transformed established cells was not reverted by excess wt p53. We conclude that an antioncogenic action of wt p53 is exerted during SV40 transformation and that in precrisis cells, the antitransforming action of wt p53 can be exerted both at initiation and during the maintenance of transformation.


1991 ◽  
Vol 11 (7) ◽  
pp. 3472-3483
Author(s):  
K Fukasawa ◽  
G Sakoulas ◽  
R E Pollack ◽  
S Chen

Wild-type (wt) murine p53 has been tested for its ability to block and reverse the transforming effects of simian virus 40 (SV40) large T antigen. Established and precrisis mouse cells overexpressing exogenously introduced wt p53 became resistant to SV40 transformation. The introduction of excess wt p53 into SV40-transformed precrisis cells reverted their transformed phenotype. However, the phenotype of SV40-transformed established cells was not reverted by excess wt p53. We conclude that an antioncogenic action of wt p53 is exerted during SV40 transformation and that in precrisis cells, the antitransforming action of wt p53 can be exerted both at initiation and during the maintenance of transformation.


1988 ◽  
Vol 8 (3) ◽  
pp. 1380-1384 ◽  
Author(s):  
V Cherington ◽  
M Brown ◽  
E Paucha ◽  
J St Louis ◽  
B M Spiegelman ◽  
...  

Wild-type simian virus 40 large T antigen is very effective at blocking adipocyte differentiation in 3T3-F442A cells as assayed by triglyceride accumulation, induction of glycerophosphate dehydrogenase activity, and expression of mRNAs for glycerophosphate dehydrogenase, the adipocyte serine protease adipsin, and the putative lipid-binding protein adipocyte P2. Point mutants defective for either origin-specific DNA binding or transformation blocked differentiation as completely as wild type.


1990 ◽  
Vol 10 (12) ◽  
pp. 6664-6673
Author(s):  
T E Riley ◽  
A Follin ◽  
N C Jones ◽  
P S Jat

Various mutants of adenovirus E1A were assayed for their ability to complement the growth defect at the nonpermissive temperature for the cell line tsa14 which was isolated by immortalizing rat embryo fibroblasts with the thermolabile large T antigen of tsA58. This cell line grows indefinitely at the permissive temperature but undergoes rapid growth arrest upon shift up to the nonpermissive temperature. Since this growth arrest can be overcome by introduction of wild-type simian virus 40 large T antigen, human papillomavirus 16 E7, and adenovirus E1A, the tsa14 cells provided an excellent system for defining regions of E1A necessary for complementation of the growth defect. We demonstrate that conserved region 1 (CR1) is the region of E1A required for complementation. While CR2 of E1A has been shown to be required for the immortalization of primary cells and is also necessary for the binding of the 105-kDa retinoblastoma protein, mutations within this region did not abrogate complementation of the growth defect. However, since both CR1 and CR2 have previously been shown to be absolutely required for immortalization of primary cells by adenovirus E1A, this evidence suggests that the tsa14 system assays for the maintenance of proliferation and that this requires CR1.


1990 ◽  
Vol 10 (12) ◽  
pp. 6664-6673 ◽  
Author(s):  
T E Riley ◽  
A Follin ◽  
N C Jones ◽  
P S Jat

Various mutants of adenovirus E1A were assayed for their ability to complement the growth defect at the nonpermissive temperature for the cell line tsa14 which was isolated by immortalizing rat embryo fibroblasts with the thermolabile large T antigen of tsA58. This cell line grows indefinitely at the permissive temperature but undergoes rapid growth arrest upon shift up to the nonpermissive temperature. Since this growth arrest can be overcome by introduction of wild-type simian virus 40 large T antigen, human papillomavirus 16 E7, and adenovirus E1A, the tsa14 cells provided an excellent system for defining regions of E1A necessary for complementation of the growth defect. We demonstrate that conserved region 1 (CR1) is the region of E1A required for complementation. While CR2 of E1A has been shown to be required for the immortalization of primary cells and is also necessary for the binding of the 105-kDa retinoblastoma protein, mutations within this region did not abrogate complementation of the growth defect. However, since both CR1 and CR2 have previously been shown to be absolutely required for immortalization of primary cells by adenovirus E1A, this evidence suggests that the tsa14 system assays for the maintenance of proliferation and that this requires CR1.


1994 ◽  
Vol 14 (4) ◽  
pp. 2686-2698 ◽  
Author(s):  
M T Sáenz Robles ◽  
H Symonds ◽  
J Chen ◽  
T Van Dyke

The ability of simian virus 40-encoded large T antigen to disrupt the growth control of a variety of cell types is related to its ability to interfere with certain cellular proteins, such as p53 and the retinoblastoma susceptibility gene product (pRB). We have used wild-type and mutant forms of T antigen in transgenic mice to dissect the roles of pRB, p53, and other cellular proteins in tumorigenesis of different cell types. In this study, using a cell-specific promoter to target expression specifically to brain epithelium (the choroid plexus) and to B and T lymphoid cells, we characterize the tumorigenic capacity of a T-antigen fragment that comprises only the amino-terminal 121 residues. This fragment (dl1137) retains the ability to interact with pRB and p107 but lacks the p53-binding domain. While loss of the p53-binding region results in loss of the capacity to induce lymphoid abnormalities, dl1137 retains the ability to induce choroid plexus tumors that are histologically indistinguishable from those induced by wild-type T antigen. Tumors induced by dl1137 develop much more slowly, however, reaching an end point at around 8 months of age rather than at 1 to 2 months. Analysis of tumor progression indicates that tumor induction by dl1137 does not require secondary genetic or epigenetic events. Rather, the tumor growth rate is significantly slowed, indicating that the T-antigen C-terminal region contributes to tumor progression in this cell type. In contrast, the pRB-binding region appears essential for tumorigenesis as mutation of residue 107, known to disrupt pRB and p107 binding to wild-type T antigen, abolishes the ability of the dl1137 protein to induce growth abnormalities in the brain.


1988 ◽  
Vol 8 (3) ◽  
pp. 1380-1384 ◽  
Author(s):  
V Cherington ◽  
M Brown ◽  
E Paucha ◽  
J St Louis ◽  
B M Spiegelman ◽  
...  

Wild-type simian virus 40 large T antigen is very effective at blocking adipocyte differentiation in 3T3-F442A cells as assayed by triglyceride accumulation, induction of glycerophosphate dehydrogenase activity, and expression of mRNAs for glycerophosphate dehydrogenase, the adipocyte serine protease adipsin, and the putative lipid-binding protein adipocyte P2. Point mutants defective for either origin-specific DNA binding or transformation blocked differentiation as completely as wild type.


1984 ◽  
Vol 4 (8) ◽  
pp. 1661-1663
Author(s):  
L Sompayrac ◽  
K J Danna

F8dl is a simian virus 40 early-region deletion mutant that lacks the simian virus 40 DNA sequences between 0.168 and 0.424 map units. Despite this large deletion, cloned F8dl DNA transforms Fisher rat F111 cells and BALB/3T3 clone A31 mouse cells as efficiently as does cloned simian virus 40 wild-type DNA. These results indicate that less than 40% of the large T-antigen-coding sequence is required for efficient transformation.


Sign in / Sign up

Export Citation Format

Share Document