nonpermissive temperature
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 3)

H-INDEX

48
(FIVE YEARS 0)

DNA ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 13-25
Author(s):  
Brian M. Wendel ◽  
Adrian J. Hernandez ◽  
Charmain T. Courcelle ◽  
Justin Courcelle

In Escherichia coli, several enzymes have been identified that participate in completing replication on the chromosome, including RecG, SbcCD, ExoI, and RecBCD. However, other enzymes are likely to be involved and the precise enzymatic mechanism by which this reaction occurs remains unknown. Two steps predicted to be necessary to complete replication are removal of Okazaki RNA fragments and ligation of the nascent strands at convergent replication forks. E. coli encodes two RNases that remove RNA-DNA hybrids, rnhA and rnhB, as well as two ligases, ligA and ligB. Here, we used replication profiling to show that rnhA and ligA, encoding RNase HI and Ligase A, participate in the completion reaction. Deletion of rnhA impaired the ability to complete replication and resulted in over-replication in the terminus region. It additionally suppressed initiation events from oriC, suggesting a role for the enzyme in oriC-dependent initiation, as has been suggested previously. We also show that a temperature-sensitive mutation in Ligase A led to over-replication at sites where replication completes, and that degradation at these sites occurred upon shifting to the nonpermissive temperature. Deletion of rnhB or ligB did not affect the growth or profile of replication on the genome.


2020 ◽  
Vol 295 (52) ◽  
pp. 18256-18265
Author(s):  
Adrien Boes ◽  
Frederic Kerff ◽  
Raphael Herman ◽  
Thierry Touze ◽  
Eefjan Breukink ◽  
...  

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75–Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.


2020 ◽  
Author(s):  
Adrien Boes ◽  
Frederic Kerff ◽  
Raphael Herman ◽  
Thierry Touze ◽  
Eefjan Breukink ◽  
...  

AbstractPeptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division PG synthesis localizes at mid-cell under the control of a multiprotein complex, the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. The region L75 to Q93 of FtsN (EFtsN) was shown to be essential and sufficient for its functioning in vivo but the specific target and the molecular mechanism remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its GTase activity. We also report the crystal structure of PBP1b in complex with EFtsN which provides structural insights into the mode of binding of EFtsN at the junction between the GTase and UB2H domains of PBP1b. Interestingly, the mutations R141A/R397A of PBP1b, within the EFtsN binding pocket, reduce the activation of PBP1b by FtsN. This mutant was unable to rescue ΔponB-ponAts strain at nonpermissive temperature and induced a mild cell chaining phenotype and cell lysis. Altogether, the results show that PBP1b is a target of EFtsN and suggest that binding of FtsN to PBP1b contributes to trigger septal PG synthesis and cell constriction.


2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Peter Bryk ◽  
Matthew G. Brewer ◽  
Brian M. Ward

ABSTRACTThe vaccinia virus protein F13, encoded by the F13L gene, is conserved across the subfamilyChordopoxvirinaeand is critical among orthopoxviruses to produce the wrapped form of virus that is required for cell-to-cell spread. F13 is the major envelope protein on the membrane of extracellular forms of virus; however, it is not known if F13 is required in steps postwrapping. In this report, we utilize two temperature-sensitive vaccinia virus mutants from the Condit collection of temperature-sensitive viruses whose small plaque phenotypes have been mapped to the F13L gene. Despite the drastic reduction in plaque size, the temperature-sensitive viruses were found to produce levels of extracellular virions similar to those of the parental strain, Western Reserve (WR), at the permissive and nonpermissive temperatures, suggesting that they are not defective in extracellular virion formation. Analyses of extracellular virions produced by one temperature-sensitive mutant found that those produced at the nonpermissive temperature had undetectable levels of F13 and bound cells with efficiency similar to that of WR but displayed delayed cell entry kinetics. Additionally, low-pH treatment of cells bound by extracellular virions produced at the nonpermissive temperature by the temperature-sensitive reporter virus was unable to overcome a block in infection by bafilomycin A1, suggesting that these virions display increased resistance to dissolution of the extracellular virion envelope. Taken together, our results suggest that F13 plays a role both in the formation of extracellular virions and in the promotion of their rapid entry into cells by enhancing the sensitivity of the membrane to acid-induced dissolution.IMPORTANCEVaccinia virus (VACV) is an orthopoxvirus and produces two infectious forms, mature virions (MV) and extracellular virions (EV). EV are derived from MV and contain an additional membrane that must first be removed prior to cell entry. F13 is critical for the formation of EV, but a postenvelopment role has not been described. Here, two temperature-sensitive VACV mutants whose deficiencies were previously mapped to the F13L locus are characterized. Both viruses produced EV at the nonpermissive temperature at levels similar to those of a virus that has F13L, yet they had a small plaque phenotype and rate of spread similar to that of an F13L deletion virus. F13 was undetectable on the EV membrane at the nonpermissive temperature, and these EV exhibited delayed cell entry kinetics compared to EV containing F13. This study is the first to conclusively demonstrate a novel role for F13 in cell entry of the EV form of the virus.


2014 ◽  
Vol 307 (8) ◽  
pp. G777-G792 ◽  
Author(s):  
Victoria G. Weis ◽  
Christine P. Petersen ◽  
Jason C. Mills ◽  
Pamela L. Tuma ◽  
Robert H. Whitehead ◽  
...  

Oxyntic atrophy in the stomach leads to chief cell transdifferentiation into spasmolytic polypeptide expressing metaplasia (SPEM). Investigations of preneoplastic metaplasias in the stomach are limited by the sole reliance on in vivo mouse models, owing to the lack of in vitro models for distinct normal mucosal lineages and metaplasias. Utilizing the Immortomouse, in vitro cell models of chief cells and SPEM were developed to study the characteristics of normal chief cells and metaplasia. Chief cells and SPEM cells isolated from Immortomice were cultured and characterized at both the permissive (33°C) and the nonpermissive temperature (39°C). Clones were selected on the basis of their transcriptional expression of specific stomach lineage markers (named ImChief and ImSPEM) and protein expression and growth were analyzed. The transcriptional expression profiles of ImChief and ImSPEM cells were compared further by using gene microarrays. ImChief cells transcriptionally express most chief cell markers and contain pepsinogen C and RAB3D-immunostaining vesicles. ImSPEM cells express the SPEM markers TFF2 and HE4 and constitutively secrete HE4. Whereas ImChief cells cease proliferation at the nonpermissive temperature, ImSPEM cells continue to proliferate at 39°C. Gene expression profiling of ImChief and ImSPEM revealed myelin and lymphocyte protein 2 (MAL2) as a novel marker of SPEM lineages. Our results indicate that the expression and proliferation profiles of the novel ImChief and ImSPEM cell lines resemble in vivo chief and SPEM cell lineages. These cell culture lines provide the first in vitro systems for studying the molecular mechanisms of the metaplastic transition in the stomach.


2012 ◽  
Vol 199 (1) ◽  
pp. 151-167 ◽  
Author(s):  
Benjamin D. Engel ◽  
Hiroaki Ishikawa ◽  
Kimberly A. Wemmer ◽  
Stefan Geimer ◽  
Ken-ichi Wakabayashi ◽  
...  

The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34°C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34°C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited.


2012 ◽  
Vol 58 (5) ◽  
pp. 589-595
Author(s):  
Guy Lemay ◽  
Martin Bisaillon

Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.


2010 ◽  
Vol 84 (19) ◽  
pp. 10148-10158 ◽  
Author(s):  
Helen L. Stokes ◽  
Surendranath Baliji ◽  
Chang Guo Hui ◽  
Stanley G. Sawicki ◽  
Susan C. Baker ◽  
...  

ABSTRACT We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33°C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5°C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.


2008 ◽  
Vol 190 (21) ◽  
pp. 7298-7301 ◽  
Author(s):  
Azusa Inoue ◽  
Yoshimitsu Murata ◽  
Hiroshi Takahashi ◽  
Naoko Tsuji ◽  
Shingo Fujisaki ◽  
...  

ABSTRACT We isolated a temperature-sensitive mutant with a mutation in mviN, an essential gene in Escherichia coli. At the nonpermissive temperature, mviN mutant cells swelled and burst. An intermediate in murein synthesis, polyprenyl diphosphate-N-acetylmuramic acid-(pentapeptide)-N-acetyl-glucosamine, accumulated in mutant cells. These results indicated that MviN is involved in murein synthesis.


2008 ◽  
Vol 82 (13) ◽  
pp. 6654-6666 ◽  
Author(s):  
Valerie G. Preston ◽  
Jill Murray ◽  
Christopher M. Preston ◽  
Iris M. McDougall ◽  
Nigel D. Stow

ABSTRACT Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.


Sign in / Sign up

Export Citation Format

Share Document