scholarly journals Genetic Dissociation of the Encapsidation and Reverse Transcription Functions in the 5′ R Region of Human Immunodeficiency Virus Type 1

1999 ◽  
Vol 73 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Jared L. Clever ◽  
Daniel A. Eckstein ◽  
Tristram G. Parslow

ABSTRACT The efficient packaging of genomic RNA into virions of human immunodeficiency virus type 1 (HIV-1) is directed bycis-acting encapsidation signals, which have been mapped to particular RNA stem-loop structures near the 5′ end of the genome. Earlier studies have shown that three such stem-loops, located adjacent to the major 5′ splice donor, are required for optimal packaging; more recent reports further suggest a requirement for the TAR and poly(A) hairpins of the 5′ R region. In the present study, we have compared the phenotypes that result from mutating these latter elements in the HIV-1 provirus. Using a single-round infectivity assay, we find that mutations which disrupt base pairing in either the TAR or poly(A) stems cause profound defects in both packaging and viral replication. Decreased genomic packaging in a given mutant was always accompanied by increased packaging of spliced viral RNAs. Compensatory mutations that restored base pairing also restored encapsidation, indicating that the secondary structures of the TAR and poly(A) stems, rather than their primary sequences, are important for packaging activity. Despite having normal RNA contents, however, viruses with compensatory mutations at the base of the TAR stem were severely replication defective, owing to a defect in proviral DNA synthesis. Our findings thus confirm that the HIV-1 TAR stem-loop is required for at least three essential viral functions (transcriptional activation, RNA packaging, and reverse transcription) and reveal that its packaging and reverse transcription activities can be dissociated genetically by mutations at the base of the TAR stem.

1993 ◽  
Vol 13 (2) ◽  
pp. 1251-1263
Author(s):  
M Sheldon ◽  
R Ratnasabapathy ◽  
N Hernandez

The inducer of short transcripts, or IST, is an unusual transcriptional element located downstream of the human immunodeficiency virus type 1 (HIV-1) promoter. IST activates HIV-1 transcription, but the resulting RNAs are short and end at approximately position +59. IST, therefore, appears to promote the formation of transcription complexes that are unable to elongate efficiently. This activity contrasts with that of TAR, the target for Tat trans-activation, which upon binding of the viral protein Tat promotes the formation of transcription complexes capable of efficient elongation through the entire viral genome. We have localized and characterized the IST element. Our results indicate that IST is located mainly between positions -5 and +26, although the sequences from positions +40 to +59 also contribute to IST activity. Unlike TAR, which is an RNA element, IST appears to be a DNA element. Thus, the HIV-1 R region is a complex regulatory region with RNA and DNA elements that promote the formation of transcription complexes with different elongation properties.


2006 ◽  
Vol 80 (23) ◽  
pp. 11710-11722 ◽  
Author(s):  
Fei Guo ◽  
Shan Cen ◽  
Meijuan Niu ◽  
Jenan Saadatmand ◽  
Lawrence Kleiman

ABSTRACT Cells are categorized as being permissive or nonpermissive according to their ability to produce infectious human immunodeficiency virus type 1 (HIV-1) lacking the viral protein Vif. Nonpermissive cells express the human cytidine deaminase APOBEC3G (hA3G), and Vif has been shown to bind to APOBEC3G and facilitate its degradation. Vif-negative HIV-1 virions produced in nonpermissive cells incorporate hA3G and have a severely reduced ability to produce viral DNA in newly infected cells. While it has been proposed that the reduction in DNA production is due to hA3G-facilitated deamination of cytidine, followed by DNA degradation, we provide evidence here that a decrease in the synthesis of the DNA by reverse transcriptase may account for a significant part of this reduction. During the infection of cells with Vif-negative HIV-1 produced from 293T cells transiently expressing hA3G, much of the inhibition of early (≥50% reduction) and late (≥95% reduction) viral DNA production, and of viral infectivity (≥95% reduction), can occur independently of DNA deamination. The inhibition of the production of early minus-sense strong stop DNA is also correlated with a similar inability of tRNA3 Lys to prime reverse transcription. A similar reduction in tRNA3 Lys priming and viral infectivity is also seen in the naturally nonpermissive cell H9, albeit at significantly lower levels of hA3G expression.


2002 ◽  
Vol 76 (15) ◽  
pp. 7897-7902 ◽  
Author(s):  
Wenfeng An ◽  
Alice Telesnitsky

ABSTRACT Genetic recombination contributes to human immunodeficiency virus type 1 (HIV-1) diversity, with homologous recombination being more frequent than nonhomologous recombination. In this study, HIV-1-based vectors were used to assay the effects of various extents of sequence divergence on the frequency of the recombination-related property of repeat deletion. Sequence variation, similar in degree to that which differentiates natural HIV-1 isolates, was introduced by synonymous substitutions into a gene segment. Repeated copies of this segment were then introduced into assay vectors. With the use of a phenotypic screen, the deletion frequency of identical repeats was compared to the frequencies of repeats that differed in sequence by various extents. During HIV-1 reverse transcription, the deletion frequency observed with repeats that differed by 5% was 65% of that observed with identical repeats. The deletion frequency decreased to 26% for repeats that differed by 9%, and when repeats differed by 18%, the deletion frequency was about 5% of the identical repeat value. Deletion frequencies fell to less than 0.3% of identical repeat values when genetic distances of 27% or more were examined. These data argue that genetic variation is not as inhibitory to HIV-1 repeat deletion as it is to the corresponding cellular process and suggest that, for sequences that differ by about 25% or more, HIV-1 recombination directed by sequence homology may be no more frequent than that which is homology independent.


2003 ◽  
Vol 77 (7) ◽  
pp. 4060-4069 ◽  
Author(s):  
Jun-Ichi Sakuragi ◽  
Shigeharu Ueda ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5′ region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.


2003 ◽  
Vol 77 (5) ◽  
pp. 3020-3030 ◽  
Author(s):  
Ebbe Sloth Andersen ◽  
Rienk E. Jeeninga ◽  
Christian Kroun Damgaard ◽  
Ben Berkhout ◽  
Jørgen Kjems

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) particle contains two identical RNA strands, each corresponding to the entire genome. The 5′ untranslated region (UTR) of each RNA strand contains extensive secondary and tertiary structures that are instrumental in different steps of the viral replication cycle. We have characterized the 5′ UTRs of nine different HIV-1 isolates representing subtypes A through G and, by comparing their homodimerization and heterodimerization potentials, found that complementarity between the palindromic sequences in the dimerization initiation site (DIS) hairpins is necessary and sufficient for in vitro dimerization of two subtype RNAs. The 5′ UTR sequences were used to design donor and acceptor templates for a coupled in vitro dimerization-reverse transcription assay. We showed that template switching during reverse transcription is increased with a matching DIS palindrome and further stimulated proportional to the level of homology between the templates. The presence of the HIV-1 nucleocapsid protein NCp7 increased the template-switching efficiency for matching DIS palindromes twofold, whereas the recombination efficiency was increased sevenfold with a nonmatching palindrome. Since NCp7 did not effect the dimerization of nonmatching palindromes, we concluded that the protein most likely stimulates the strand transfer reaction. An analysis of the distribution of template-switching events revealed that it occurs throughout the 5′ UTR. Together, these results demonstrate that the template switching of HIV-1 reverse transcriptase occurs frequently in vitro and that this process is facilitated mainly by template proximity and the level of homology.


2002 ◽  
Vol 76 (5) ◽  
pp. 2329-2339 ◽  
Author(s):  
Nancy Beerens ◽  
Ben Berkhout

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA3 Lys molecule, which binds, with its 3"-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional interactions between viral RNA sequences and the tRNA primer are thought to regulate the process of reverse transcription. We previously identified a novel 8-nt sequence motif in the U5 region of the HIV-1 RNA genome that is critical for tRNA3 Lys-mediated initiation of reverse transcription in vitro. This motif activates initiation from the natural tRNA3 Lys primer but is not involved in tRNA placement and was therefore termed primer activation signal (PAS). It was proposed that the PAS interacts with the anti-PAS motif in the TΨC arm of tRNA3 Lys. In this study, we analyzed several PAS-mutated viruses and performed reverse transcription assays with virion-extracted RNA-tRNA complexes. Mutation of the PAS reduced the efficiency of tRNA-primed reverse transcription. In contrast, mutations in the opposing leader sequence that trigger release of the PAS from base pairing stimulated reverse transcription. These results are similar to the reverse transcription effects observed in vitro. We also selected revertant viruses that partially overcome the reverse transcription defect of the PAS deletion mutant. Remarkably, all revertants acquired a single nucleotide substitution that does not restore the PAS sequence but that stimulates elongation of reverse transcription. These combined results indicate that the additional PAS-anti-PAS interaction is needed to assemble an initiation-competent and processive reverse transcription complex.


2000 ◽  
Vol 74 (18) ◽  
pp. 8324-8334 ◽  
Author(s):  
Yuki Ohi ◽  
Jared L. Clever

ABSTRACT The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (−sssDNA) is transferred from the 5′ end to the 3′ end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5′, the 3′, or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5′ or the 3′ R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length −sssDNA and 3′ acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5′ or the 3′ R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5′, the 3′, or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the −sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5′ R.


2000 ◽  
Vol 74 (19) ◽  
pp. 8938-8945 ◽  
Author(s):  
Markus Dettenhofer ◽  
Shan Cen ◽  
Bradley A. Carlson ◽  
Lawrence Kleiman ◽  
Xiao-Fang Yu

ABSTRACT The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication, although the functional target of Vif remains elusive. HIV-1 vif mutant virions derived from nonpermissive H9 cells displayed no significant differences in the amount, ratio, or integrity of their protein composition relative to an isogenic wild-type virion. The amounts of the virion-associated viral genomic RNA and tRNA3 Lyswere additionally present at normal levels in vif mutant virions. We demonstrate that Vif associates with RNA in vitro as well as with viral genomic RNA in virus-infected cells. A functionally conserved lentivirus Vif motif was found in the double-stranded RNA binding domain of Xenopus laevis, Xlrbpa. The natural intravirion reverse transcriptase products were markedly reduced invif mutant virions. Moreover, purified vifmutant genomic RNA-primer tRNA complexes displayed severe defects in the initiation of reverse transcription with recombinant reverse transcriptase. These data point to a novel role for Vif in the regulation of efficient reverse transcription through modulation of the virion nucleic acid components.


1997 ◽  
Vol 8 (1) ◽  
pp. 60-69 ◽  
Author(s):  
JA Turpin ◽  
CA Schaeffer ◽  
SJ Terpening ◽  
L Graham ◽  
M Bu ◽  
...  

The Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys zinc fingers of retroviral nucleocapsid (NC) proteins are prime antiviral targets due to conservation of the Cys and His chelating residues and the absolute requirement of these fingers in both early and late phases of retroviral replication. Certain 2,2′-dithiobisbenzamides (DIBAs) chemically modify the Cys residues of the fingers, thereby inhibiting in vitro replication of human immunodeficiency virus type 1 (HIV-1). We examined the consequences of DIBA interaction with cell-free virions and their subsequent ability to initiate new rounds of infection. The DIBAs entered intact virions and chemically modified the p7NC proteins, resulting in extensive disulphide cross-linkage among zinc fingers of adjacent p7NC molecules. Likewise, treatment of Pr55gag-laden pseudovirions, used as a model of virion particles, with DIBAs resulted in Pr55gag cross-linkage. In contrast, monomeric p7NC protein did not form cross-linkages after DIBA treatment, indicating that the retroviral zinc finger proteins must exist in close proximity for cross-linkage to occur. Cross-linkage of p7NC in virions correlated with loss of infectivity and decreased proviral DNA synthesis during acute infection, even though DIBAs did not inhibit virus attachment to host cells or reverse transcriptase enzymatic activity. Thus, DIBA-type molecules impair the ability of HIV-1 virions to initiate reverse transcription through their action on the retroviral zinc finger, thereby blocking further rounds of replication.


2004 ◽  
Vol 78 (10) ◽  
pp. 5523-5527 ◽  
Author(s):  
Karine Triques ◽  
Mario Stevenson

ABSTRACT Tissue macrophages are an important cellular reservoir for replication of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus. In vitro, the ability of macrophages to support viral replication is differentiation dependent in that precursor monocytes are refractory to infection. There is, however, no consensus as to the exact point at which infection is restricted in monocytes. We have revisited this issue and have compared the efficiencies of early HIV-1 replication events in monocytes and in differentiated macrophages. Although virus entry in monocytes was comparable to that in differentiated macrophages, synthesis of full-length viral cDNAs was very inefficient. Relative to differentiated macrophages, monocytes contained low levels of dTTP due to low thymidine phosphorylase activity. Exogenous addition of d-thymidine increased dTTP levels to that in differentiated macrophages but did not correct the reverse transcription defect. These results point to a restriction in monocytes that is independent of reverse transcription precursors and suggest that differentiation-dependent cellular cofactors of reverse transcription are rate limiting in monocytes.


Sign in / Sign up

Export Citation Format

Share Document