scholarly journals Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Activates the JNK Pathway through Its Extreme C Terminus via a Mechanism Involving TRADD and TRAF2

1999 ◽  
Vol 73 (2) ◽  
pp. 1023-1035 ◽  
Author(s):  
Aristides G. Eliopoulos ◽  
Sarah M. S. Blake ◽  
J. Eike Floettmann ◽  
Martin Rowe ◽  
Lawrence S. Young

ABSTRACT The transforming Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) activates signalling on the NF-κB axis through two distinct domains in its cytoplasmic C terminus, namely, CTAR1 (amino acids [aa] 187 to 231) and CTAR2 (aa 351 to 386). The ability of CTAR1 to activate NF-κB appears to be attributable to the direct interaction of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), while recent work indicates that CTAR2-induced NF-κB is mediated through its association with TNF receptor-associated death domain (TRADD). LMP1 expression also results in activation of the c-Jun N-terminal kinase (JNK) (also known as stress-activated protein kinase) cascade, an effect which is mediated exclusively through CTAR2 and can be dissociated from NF-κB induction. The organization and signalling components involved in LMP1-induced JNK activation are not known. In this study we have dissected the extreme C terminus of LMP1 and have identified the last 8 aa of the protein (aa 378 to 386) as being important for JNK signalling. Using a series of fine mutants in which single amino acids between codons 379 and 386 were changed to glycine, we have found that mutations of Pro379, Glu381, Ser383, or Tyr384 diminish the ability of LMP1 CTAR2 to engage JNK signalling. Interestingly, this region was also found to be essential for CTAR2-mediated NF-κB induction and coincides with the LMP1 amino acid sequences shown to bind TRADD. Furthermore, we have found that LMP1-mediated JNK activation is synergistically augmented by low levels of TRADD expression, suggesting that this adapter protein is critical for LMP1 signalling. TRAF2 is known to associate with TRADD, and expression of a dominant-negative N-terminal deletion TRAF2 mutant was found to partially inhibit LMP1-induced JNK activation in 293 cells. In addition, the TRAF2-interacting protein A20 blocked both LMP1-induced JNK and NF-κB activation, further implicating TRAF2 in these phenomena. While expression of a kinase-inactive mutated NF-κB-inducing kinase (NIK), a mitogen-activated protein kinase kinase kinase which also associates with TRAF2, impaired LMP1 signalling on the NF-κB axis, it did not inhibit LMP1-induced JNK activation, suggesting that these two pathways may bifurcate at the level of TRAF2. These data further define a role for TRADD and TRAF2 in JNK activation and confirm that LMP1 utilizes signalling mechanisms used by the TNF receptor/CD40 family to elicit its pleiotropic activities.

Cytokine ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 210-219 ◽  
Author(s):  
San San Lin ◽  
Davy C.W. Lee ◽  
Anna H.Y. Law ◽  
Jun Wei Fang ◽  
Daniel T.T. Chua ◽  
...  

2004 ◽  
Vol 24 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Jun Wan ◽  
Luguo Sun ◽  
Jennifer Woo Mendoza ◽  
Yiu Loon Chui ◽  
Dolly P. Huang ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is associated with several human diseases including infectious mononucleosis and nasopharyngeal carcinoma. EBV-encoded latent membrane protein 1 (LMP1) is oncogenic and indispensable for cellular transformation caused by EBV. Expression of LMP1 in host cells constitutively activates both the c-Jun N-terminal kinase (JNK) and NF-κB pathways, which contributes to the oncogenic effect of LMP1. However, the underlying signaling mechanisms are not very well understood. Based mainly on overexpression studies with various dominant-negative constructs, LMP1 was generally thought to functionally mimic members of the tumor necrosis factor (TNF) receptor superfamily in signaling. In contrast to the prevailing paradigm, using embryonic fibroblasts from different knockout mice and the small interfering RNA technique, we find that the LMP1-mediated JNK pathway is distinct from those mediated by either TNF-α or interleukin-1. Moreover, we have further elucidated the LMP1-mediated JNK pathway by demonstrating that LMP1 selectively utilizes TNF receptor-associated factor 6, TAK1/TAB1, and c-Jun N-terminal kinase kinases 1 and 2 to activate JNK.


2010 ◽  
Vol 84 (13) ◽  
pp. 6605-6614 ◽  
Author(s):  
Che-Pei Kung ◽  
Nancy Raab-Traub

ABSTRACT Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1) is required for EBV B-lymphocyte transformation, transforms rodent fibroblasts, and can induce lymphoma and epithelial hyperplasia in transgenic mice. Two domains have been identified within the intracellular carboxy terminus that can activate NF-κB, C-terminus-activating region 1 (CTAR1) and CTAR2, through interactions with tumor necrosis receptor-associated factors (TRAFs). CTAR1 can activate both the canonical and noncanonical NF-κB pathways and has unique effects on cellular gene expression. The epidermal growth factor receptor (EGFR) is highly induced by LMP1-CTAR1 in epithelial cells through activation of a novel NF-κB form containing p50 homodimers and Bcl-3. To further understand the regulation of NF-κB in CTAR1-induced EGFR expression, we evaluated the ability of CTAR1 to induce EGFR in mouse embryonic fibroblasts (MEFs) defective for different NF-κB effectors. CTAR1-mediated EGFR induction required the N F-κB- i nducing k inase (NIK) but not the IκB kinase (IKK) complex components that regulate canonical or noncanonical NF-κB pathways. CTAR1-mediated induction of nuclear p50 occurred in IKKβ-, IKKγ-, and NIK-defective MEFs, indicating that this induction is not dependent on the canonical or noncanonical NF-κB pathways. EGFR and nuclear p50 were expressed at high levels in TRAF2−/− fibroblasts and were not induced by CTAR1. In TRAF3−/− MEFs, CTAR1 induced nuclear p50 but did not affect basal levels of STAT3 serine phosphorylation or induce EGFR expression. EGFR was induced by LMP1 in TRAF6−/− MEFs. These findings suggest that this novel NF-κB pathway is differentially regulated by TRAF2 and TRAF3, and that distinct interactions of LMP1 and its effectors regulate LMP1-mediated gene expression.


2004 ◽  
Vol 78 (15) ◽  
pp. 8404-8410 ◽  
Author(s):  
Jyotsna Pandya ◽  
Dennis M. Walling

ABSTRACT This study examined the effect of naturally occurring Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene sequence variation on the LMP-1 half-life in epithelial cells. The LMP-1 half-life was not influenced by sequence variation in amino acids 250 to 307 or amino acids 343 to 352. The LMP-1 half-life was short when the amino acid encoded at position 129 was methionine, the initiation codon product of lytic LMP-1 (lyLMP-1). The mutation of amino acid 129 to isoleucine greatly increased the LMP-1 half-life. Expression of lyLMP-1 in trans down-regulated the LMP-1 half-life in a dose-dependent manner and restored a short-half-life phenotype to the mutated LMP-1 construct lacking the cis ability to express lyLMP-1. This observed dominant negative effect of lyLMP-1 expression on the LMP-1 half-life in epithelial cells in vitro may have implications for EBV epithelial oncogenesis in vivo.


2015 ◽  
Vol 89 (11) ◽  
pp. 5968-5980 ◽  
Author(s):  
Kun-Yi Lai ◽  
Ya-Ching Chou ◽  
Jiun-Han Lin ◽  
Yi Liu ◽  
Kai-Min Lin ◽  
...  

ABSTRACTEpstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs)in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification.IMPORTANCEEBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell linesin vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.


Virology ◽  
2011 ◽  
Vol 413 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Chun-Wei Lee ◽  
Shr-Jeng Jim Leu ◽  
Ruei-Ying Tzeng ◽  
Sheng–Fan Wang ◽  
Shu-Chun Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document