scholarly journals Immunogenicity of Mutations Induced by Nucleoside Reverse Transcriptase Inhibitors for Human Immunodeficiency Virus Type 1-Specific Cytotoxic T Cells

2000 ◽  
Vol 74 (19) ◽  
pp. 9306-9312 ◽  
Author(s):  
Assia Samri ◽  
Gaby Haas ◽  
Joerg Duntze ◽  
Jean-Marc Bouley ◽  
Vincent Calvez ◽  
...  

ABSTRACT The impact of drug resistance mutations induced by nucleoside reverse transcriptase (RT) inhibitors (NRTI) on cytotoxic T-lymphocyte (CTL) recognition of human immunodeficiency virus type 1 strain LAI (HIV-1LAI) RT was addressed in 35 treated or untreated patients. Two HIV-1LAI RT regions encompassing mutation M41L, L74V, M184V, and T215Y/F were recognized in 75 and 83% mutated and in 33 and 42% unmutated samples, respectively. A total of 41 new CTL epitopes overlapping these mutations were predicted. Mutations enhanced HLA-binding scores of 17 epitopes, decreased scores of 5, and had no effect in 19. Four predicted epitopes containing mutations 41, 74, and 184 were tested and recognized by CD8 cells from mutated or unmutated samples, with frequencies up to 270 gamma interferon spot-forming cells per 106 peripheral blood mononuclear cells. Therefore, RT mutations induced by NRTI can increase the immunogenicity of RT for CTL and might allow a better immune control of resistant viruses in vivo, suggesting that specific immune therapy might help prevent these mutations.

2007 ◽  
Vol 81 (22) ◽  
pp. 12145-12155 ◽  
Author(s):  
Zandrea Ambrose ◽  
Sarah Palmer ◽  
Valerie F. Boltz ◽  
Mary Kearney ◽  
Kay Larsen ◽  
...  

ABSTRACT Antiretroviral therapy (ART) in human immunodeficiency virus type 1 (HIV-1)-infected patients does not clear the infection and can select for drug resistance over time. Not only is drug-resistant HIV-1 a concern for infected individuals on continual therapy, but it is an emerging problem in resource-limited settings where, in efforts to stem mother-to-child-transmission of HIV-1, transient nonnucleoside reverse transcriptase inhibitor (NNRTI) therapy given during labor can select for NNRTI resistance in both mother and child. Questions of HIV-1 persistence and drug resistance are highly amenable to exploration within animals models, where therapy manipulation is less constrained. We examined a pigtail macaque infection model responsive to anti-HIV-1 therapy to study the development of resistance. Pigtail macaques were infected with a pathogenic simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT-SHIV) to examine the impact of prior exposure to a NNRTI on subsequent ART comprised of a NNRTI and two nucleoside RT inhibitors. K103N resistance-conferring mutations in RT rapidly accumulated in 2/3 infected animals after NNRTI monotherapy and contributed to virologic failure during ART in 1/3 animals. By contrast, ART effectively suppressed RT-SHIV in 5/6 animals. These data indicate that suboptimal therapy facilitates HIV-1 drug resistance and suggest that this model can be used to investigate persisting viral reservoirs.


2006 ◽  
Vol 51 (2) ◽  
pp. 638-644 ◽  
Author(s):  
Renato S. Aguiar ◽  
Luciana J. Costa ◽  
Helena S. Pereira ◽  
Rodrigo M. Brindeiro ◽  
Amilcar Tanuri

ABSTRACT Potential topical retrovirucides or vaginal microbicides against human immunodeficiency virus type 1 (HIV-1) include nonnucleoside reverse transcriptase inhibitors (NNRTIs). To be successful, such agents have to be highly active against cell-free virions. In the present study, we developed a new real-time PCR-based assay to measure the natural endogenous reverse transcription (NERT) activity directly on intact HIV-1 particles in the presence of reverse transcriptase (RT) inhibitors. We further evaluated the permeability to nevirapine (NVP) and efavirenz (EFV) and their retention within nascent viral particles. We also demonstrated the NVP and EFV inhibitory effects on NERT activity and the impact of resistance mutations measured directly by this new strategy. Furthermore, the results showed a clear correlation between NERT activity and classical infectivity assays. The 50% inhibitory concentrations (IC50s) of NVP and EFV were demonstrated to be up to 100-fold higher for cell-free than for cell-associated virions, suggesting that cell-free virions are less permeable to these drugs. Our results suggest that NVP and EFV penetrate both the envelope and the capsid of HIV-1 particles and readily inactivate cell-free virions. However, the characteristics of these NNRTIs, such as lower permeability and lower retention during washing procedures, in cell-free virions reduce their efficacies as microbicides. Here, we demonstrate the usefulness of the NERT real-time PCR as an assay for screening novel antiretroviral compounds with unique mechanisms of action.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2001 ◽  
Vol 75 (16) ◽  
pp. 7266-7279 ◽  
Author(s):  
Dai Wang ◽  
Cynthia de la Fuente ◽  
Longwen Deng ◽  
Lai Wang ◽  
Irene Zilberman ◽  
...  

ABSTRACT Cyclin-dependent kinases (cdk's) have recently been suggested to regulate human immunodeficiency virus type 1 (HIV-1) transcription. Previously, we have shown that expression of one cdk inhibitor, p21/Waf1, is abrogated in HIV-1 latently infected cells. Based on this result, we investigated the transcription of HIV-1 in the presence of chemical drugs that specifically inhibited cdk activity and functionally mimicked p21/Waf1 activity. HIV-1 production in virally integrated lymphocytic and monocytic cell lines, such as ACH2, 8E5, and U1, as well as activated peripheral blood mononuclear cells infected with syncytium-inducing (SI) or non-syncytium-inducing (NSI) HIV-1 strains, were all inhibited by Roscovitine, a purine derivative that reversibly competes for the ATP binding site present in cdk's. The decrease in viral progeny in the HIV-1-infected cells was correlated with a decrease in the transcription of HIV-1 RNAs in cells treated with Roscovitine and not with the non-cdk general cell cycle inhibitors, such as hydroxyurea (G1/S blocker) or nocodazole (M-phase blocker). Cyclin A- and E-associated histone H1 kinases, as well as cdk 7 and 9 activities, were all inhibited in the presence of Roscovitine. The 50% inhibitory concentration of Roscovitine on cdk's 9 and 7 was determined to be ∼0.6 μM. Roscovitine could selectively sensitize HIV-1-infected cells to apoptosis at concentrations that did not impede the growth and proliferation of uninfected cells. Apoptosis induced by Roscovitine was found in both latent and activated infected cells, as evident by Annexin V staining and the cleavage of the PARP protein by caspase-3. More importantly, contrary to many apoptosis-inducing agents, where the apoptosis of HIV-1-infected cells accompanies production and release of infectious HIV-1 viral particles, Roscovitine treatment selectively killed HIV-1-infected cells without virion release. Collectively, our data suggest that cdk's are required for efficient HIV-1 transcription and, therefore, we propose specific cdk inhibitors as potential antiviral agents in the treatment of AIDS.


2002 ◽  
Vol 76 (7) ◽  
pp. 3248-3256 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3′-azido-3′-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5′-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5′-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


2005 ◽  
Vol 49 (5) ◽  
pp. 1761-1769 ◽  
Author(s):  
Anthony J. Smith ◽  
Peter R. Meyer ◽  
Deshratn Asthana ◽  
Margarita R. Ashman ◽  
Walter A. Scott

ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.


Sign in / Sign up

Export Citation Format

Share Document