scholarly journals Specific Interaction of Hepatitis C Virus Protease/Helicase NS3 with the 3′-Terminal Sequences of Viral Positive- and Negative-Strand RNA

2001 ◽  
Vol 75 (4) ◽  
pp. 1708-1721 ◽  
Author(s):  
Rajeev Banerjee ◽  
Asim Dasgupta

ABSTRACT The hepatitis C virus (HCV)-encoded protease/helicase NS3 is likely to be involved in viral RNA replication. We have expressed and purified recombinant NS3 (protease and helicase domains) and ΔpNS3 (helicase domain only) and examined their abilities to interact with the 3′-terminal sequence of both positive and negative strands of HCV RNA. These regions of RNA were chosen because initiation of RNA synthesis is likely to occur at or near the 3′ untranslated region (UTR). The results presented here demonstrate that NS3 (and ΔpNS3) interacts efficiently and specifically with the 3′-terminal sequences of both positive- and negative-strand RNA but not with the corresponding complementary 5′-terminal RNA sequences. The interaction of NS3 with the 3′-terminal negative strand [called 3′(−) UTR127] was specific in that only homologous (and not heterologous) RNA competed efficiently in the binding reaction. A predicted stem-loop structure present at the 3′ terminus (nucleotides 5 to 20 from the 3′ end) of the negative-strand RNA appears to be important for NS3 binding to the negative-strand UTR. Deletion of the stem-loop structure almost totally impaired NS3 (and ΔpNS3) binding. Additional mutagenesis showed that three G-C pairs within the stem were critical for helicase-RNA interaction. The data presented here also suggested that both a double-stranded structure and the 3′-proximal guanosine residues in the stem were important determinants of protein binding. In contrast to the relatively stringent requirement for 3′(−) UTR binding, specific interaction of NS3 (or ΔpNS3) with the 3′-terminal sequences of the positive-strand RNA [3′(+) UTR] appears to require the entire 3′(+) UTR of HCV. Deletion of either the 98-nucleotide 3′-terminal conserved region or the 5′ half sequence containing the variable region and the poly(U) and/or poly(UC) stretch significantly impaired RNA-protein interaction. The implication of NS3 binding to the 3′-terminal sequences of viral positive- and negative-strand RNA in viral replication is discussed.

2003 ◽  
Vol 77 (5) ◽  
pp. 3312-3318 ◽  
Author(s):  
Guangxiang Luo ◽  
Shaojie Xin ◽  
Zhaohui Cai

ABSTRACT Sequences of the untranslated regions at the 5′ and 3′ ends (5′UTR and 3′UTR) of the hepatitis C virus (HCV) RNA genome are highly conserved and contain cis-acting RNA elements for HCV RNA replication. The HCV 5′UTR consists of two distinct RNA elements, a short 5′-proximal stem-loop RNA element (nucleotides 1 to 43) and a longer element of internal ribosome entry site. To determine the sequence and structural requirements of the 5′-proximal stem-loop RNA element in HCV RNA replication and translation, a mutagenesis analysis was preformed by nucleotide deletions and substitutions. Effects of mutations in the 5′-proximal stem-loop RNA element on HCV RNA replication were determined by using a cell-based HCV replicon replication system. Deletion of the first 20 nucleotides from the 5′ end resulted in elimination of cell colony formation. Likewise, disruption of the 5′-proximal stem-loop by nucleotide substitutions abolished the ability of HCV RNA to induce cell colony formation. However, restoration of the 5′-proximal stem-loop by compensatory mutations with different nucleotides rescued the ability of the subgenomic HCV RNA to replicate in Huh7 cells. In addition, deletion and nucleotide substitutions of the 5′-proximal stem-loop structure, including the restored stem-loop by compensatory mutations, all resulted in reduction of translation by two- to fivefold, suggesting that the 5′-proximal stem-loop RNA element also modulates HCV RNA translation. These findings demonstrate that the 5′-proximal stem-loop of the HCV RNA is a cis-acting RNA element that regulates HCV RNA replication and translation.


2007 ◽  
Vol 81 (10) ◽  
pp. 5270-5283 ◽  
Author(s):  
Marco Binder ◽  
Doris Quinkert ◽  
Olga Bochkarova ◽  
Rahel Klein ◽  
Nikolina Kezmic ◽  
...  

ABSTRACT The 5′ nontranslated region (NTR) and the X tail in the 3′ NTR are the least variable parts of the hepatitis C virus (HCV) genome and play an important role in the initiation of RNA synthesis. By using subgenomic replicons of the HCV isolates Con1 (genotype 1) and JFH1 (genotype 2), we characterized the genotype specificities of the replication signals contained in the NTRs. The replacement of the JFH1 5′ NTR and X tail with the corresponding Con1 sequence resulted in a significant decrease in replication efficiency. Exchange of the X tail specifically reduced negative-strand synthesis, whereas substitution of the 5′ NTR impaired the generation of progeny positive strands. In search for the proteins involved in the recognition of genotype-specific initiation signals, we analyzed recombinant nonstructural protein 5B (NS5B) RNA polymerases of both isolates and found some genotype-specific template preference for the 3′ end of positive-strand RNA in vitro. To further address genotype specificity, we constructed a series of intergenotypic replicon chimeras. When combining NS3 to NS5A of Con1 with NS5B of JFH1, we observed more-efficient replication with the genotype 2a X tail, indicating that NS5B recognizes genotype-specific signals in this region. In contrast, a combination of the NS3 helicase with NS5A and NS5B was required to confer genotype specificity to the 5′ NTR. These results present the first genetic evidence for an interaction between helicase, NS5A, and NS5B required for the initiation of RNA synthesis and provide a system for the specific analysis of HCV positive- and negative-strand syntheses.


2007 ◽  
Vol 81 (13) ◽  
pp. 7077-7085 ◽  
Author(s):  
Kelly S. Colletti ◽  
Kate E. Smallenburg ◽  
Yiyang Xu ◽  
Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.


2010 ◽  
Vol 84 (18) ◽  
pp. 9267-9277 ◽  
Author(s):  
Toshana L. Foster ◽  
Tamara Belyaeva ◽  
Nicola J. Stonehouse ◽  
Arwen R. Pearson ◽  
Mark Harris

ABSTRACT The hepatitis C virus (HCV) nonstructural protein NS5A is critical for viral genome replication and is thought to interact directly with both the RNA-dependent RNA polymerase, NS5B, and viral RNA. NS5A consists of three domains which have, as yet, undefined roles in viral replication and assembly. In order to define the regions that mediate the interaction with RNA, specifically the HCV 3′ untranslated region (UTR) positive-strand RNA, constructs of different domain combinations were cloned, bacterially expressed, and purified to homogeneity. Each of these purified proteins was probed for its ability to interact with the 3′ UTR RNA using filter binding and gel electrophoretic mobility shift assays, revealing differences in their RNA binding efficiencies and affinities. A specific interaction between domains I and II of NS5A and the 3′ UTR RNA was identified, suggesting that these are the RNA binding domains of NS5A. Domain III showed low in vitro RNA binding capacity. Filter binding and competition analyses identified differences between NS5A and NS5B in their specificities for defined regions of the 3′ UTR. The preference of NS5A, in contrast to NS5B, for the polypyrimidine tract highlights an aspect of 3′ UTR RNA recognition by NS5A which may play a role in the control or enhancement of HCV genome replication.


2003 ◽  
Vol 77 (20) ◽  
pp. 11284-11289 ◽  
Author(s):  
A. Corina Vlot ◽  
John F. Bol

ABSTRACT The three genomic RNAs of alfalfa mosaic virus each contain a unique 5′ untranslated region (5′ UTR). Replacement of the 5′ UTR of RNA 1 by that of RNA 2 or 3 yielded infectious replicons. The sequence of a putative 5′ stem-loop structure in RNA 1 was found to be required for negative-strand RNA synthesis. A similar putative 5′ stem-loop structure is present in RNA 2 but not in RNA 3.


2008 ◽  
Vol 82 (18) ◽  
pp. 9008-9022 ◽  
Author(s):  
Sinéad Diviney ◽  
Andrew Tuplin ◽  
Madeleine Struthers ◽  
Victoria Armstrong ◽  
Richard M. Elliott ◽  
...  

ABSTRACT The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5′ and 3′ noncoding regions (5′ and 3′ NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3′ to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a “kissing loop” interaction with the 3′ NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5′ and 3′ sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.


2005 ◽  
Vol 79 (1) ◽  
pp. 380-392 ◽  
Author(s):  
Peter Friebe ◽  
Julien Boudet ◽  
Jean-Pierre Simorre ◽  
Ralf Bartenschlager

ABSTRACT The hepatitis C virus (HCV) is a positive-strand RNA virus belonging to the Flaviviridae. Its genome carries at either end highly conserved nontranslated regions (NTRs) containing cis-acting RNA elements that are crucial for replication. In this study, we identified a novel RNA element within the NS5B coding sequence that is indispensable for replication. By using secondary structure prediction and nuclear magnetic resonance spectroscopy, we found that this RNA element, designated 5BSL3.2 by analogy to a recent report (S. You, D. D. Stump, A. D. Branch, and C. M. Rice, J. Virol. 78:1352-1366, 2004), consists of an 8-bp lower and a 6-bp upper stem, an 8-nucleotide-long bulge, and a 12-nucleotide-long upper loop. Mutational disruption of 5BSL3.2 structure blocked RNA replication, which could be restored when an intact copy of this RNA element was inserted into the 3′ NTR. By using this replicon design, we mapped the elements in 5BSL3.2 that are critical for RNA replication. Most importantly, we discovered a nucleotide sequence complementarity between the upper loop of this RNA element and the loop region of stem-loop 2 in the 3′ NTR. Mismatches introduced into the loops inhibited RNA replication, which could be rescued when complementarity was restored. These data provide strong evidence for a pseudoknot structure at the 3′ end of the HCV genome that is essential for replication.


Sign in / Sign up

Export Citation Format

Share Document