scholarly journals Favorable and Unfavorable HLA Class I Alleles and Haplotypes in Zambians Predominantly Infected with Clade C Human Immunodeficiency Virus Type 1

2002 ◽  
Vol 76 (16) ◽  
pp. 8276-8284 ◽  
Author(s):  
Jianming Tang ◽  
Shenghui Tang ◽  
Elena Lobashevsky ◽  
Angela D. Myracle ◽  
Ulgen Fideli ◽  
...  

ABSTRACT The setpoint of viral RNA concentration (viral load [VL]) during chronic human immunodeficiency virus type 1 (HIV-1) infection reflects a virus-host equilibration closely related to CD8+ cytotoxic T-lymphocyte (CTL) responses, which rely heavily on antigen presentation by the human major histocompatibility complex (MHC) (i.e., HLA) class I molecules. Differences in HIV-1 VL among 259 mostly clade C virus-infected individuals (137 females and 122 males) in the Zambia-UAB HIV Research Project (ZUHRP) were associated with several HLA class I alleles and haplotypes. In particular, general linear model analyses revealed lower log10 VL among those with HLA allele B*57 (P = 0.002 [without correction]) previously implicated in favorable response and in those with HLA B*39 and A*30-Cw*03 (P = 0.002 to 0.016); the same analyses also demonstrated higher log10 VL among individuals with A*02-Cw*16, A*23-B*14, and A*23-Cw*07 (P = 0.010 to 0.033). These HLA effects remained strong (P = 0.0002 to 0.075) after adjustment for age, gender, and duration of infection and persisted across three orders of VL categories (P = 0.001 to 0.084). In contrast, neither B*35 (n = 15) nor B*53 (n = 53) showed a clear disadvantage such as that reported elsewhere for these closely related alleles. Other HLA associations with unusually high (A*68, B*41, B*45, and Cw*16) or low (B*13, Cw*12, and Cw*18) VL were either unstable or reflected their tight linkage respecting disequilibria with other class I variants. The three consistently favorable HLA class I variants retained in multivariable models and in alternative analyses were present in 30.9% of subjects with the lowest (<10,000 copies per ml) and 3.1% of those with the highest (>100,000) VL. Clear differential distribution of HLA profiles according to level of viremia suggests important host genetic contribution to the pattern of immune control and escape during HIV-1 infection.

2006 ◽  
Vol 81 (4) ◽  
pp. 1619-1631 ◽  
Author(s):  
Xu G. Yu ◽  
Mathias Lichterfeld ◽  
Senica Chetty ◽  
Katie L. Williams ◽  
Stanley K. Mui ◽  
...  

ABSTRACT The relative contributions of HLA alleles and T-cell receptors (TCRs) to the prevention of mutational viral escape are unclear. Here, we examined human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses restricted by two closely related HLA class I alleles, B*5701 and B*5703, that differ by two amino acids but are both associated with a dominant response to the same HIV-1 Gag epitope KF11 (KAFSPEVIPMF). When this epitope is presented by HLA-B*5701, it induces a TCR repertoire that is highly conserved among individuals, cross-recognizes viral epitope variants, and is rarely associated with mutational escape. In contrast, KF11 presented by HLA-B*5703 induces an entirely different, more heterogeneous TCR β-chain repertoire that fails to recognize specific KF11 escape variants which frequently arise in clade C-infected HLA-B*5703+ individuals. These data show the influence of HLA allele subtypes on TCR selection and indicate that extensive TCR diversity is not a prerequisite to prevention of allowable viral mutations.


2006 ◽  
Vol 80 (14) ◽  
pp. 7226-7234 ◽  
Author(s):  
A. J. Frater ◽  
C. T. T. Edwards ◽  
N. McCarthy ◽  
J. Fox ◽  
H. Brown ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) genetic diversity is a major obstacle for the design of a successful vaccine. Certain viral polymorphisms encode human leukocyte antigen (HLA)-associated immune escape, potentially overcoming limited vaccine protection. Although transmission of immune escape variants has been reported, the overall extent to which this phenomenon occurs in populations and the degree to which it contributes to HIV-1 viral evolution are unknown. Selection on the HIV-1 env gene at transmission favors neutralization-sensitive variants, but it is not known to what degree selection acts on the internal HIV-1 proteins to restrict or enhance the transmission of immune escape variants. Studies have suggested that HLA class I may determine susceptibility to HIV-1 infection, but a definitive role for HLA at transmission remains unproven. Comparing populations of acute seroconverters and chronically infected patients, we found no evidence of selection acting to restrict transmission of HIV-1 variants. We found that statistical associations previously reported in chronic infection between viral polymorphisms and HLA class I alleles are not present in acute infection, suggesting that the majority of viral polymorphisms in these patients are the result of transmission rather than de novo adaptation. Using four episodes of HIV-1 transmission in which the donors and recipients were both sampled very close to the time of infection we found that, despite a transmission bottleneck, genetic variants of HIV-1 infection are transmitted in a frequency-dependent manner. As HIV-1 infections are seeded by unique donor-adapted viral variants, each episode is a highly individual antigenic challenge. Host-specific, idiosyncratic HIV-1 antigenic diversity will seriously tax the efficacy of immunization based on consensus sequences.


2009 ◽  
Vol 83 (13) ◽  
pp. 6941-6946 ◽  
Author(s):  
Eric Nou ◽  
Yan Zhou ◽  
Damaris D. Nou ◽  
Joel N. Blankson

ABSTRACT Elite controllers or suppressors (ES) are human immunodeficiency virus type 1 (HIV-1)-infected patients who control viral replication to <50 copies/ml without antiretroviral therapy. Downregulation of HLA class I molecules is an important mechanism used by HIV-1 to evade the immune system. In this study, we showed that primary isolates from ES are as effective as isolates obtained from patients with progressive HIV-1 disease at downregulating HLA-A*2 and HLA-B*57 molecules on primary CD4+ T cells. Thus, a diminished ability of viral isolates from ES to evade HIV-specific immune responses probably does not contribute to the control of viral replication in these patients.


2009 ◽  
Vol 83 (13) ◽  
pp. 6798-6805 ◽  
Author(s):  
Galit Alter ◽  
Suzannah Rihn ◽  
Katharine Walter ◽  
Anne Nolting ◽  
Maureen Martin ◽  
...  

ABSTRACT NK cells are critical in the early containment of viral infections. Epidemiological and functional studies have shown an important role of NK cells expressing specific killer immunoglobulin-like receptors (KIRs) in the control of human immunodeficiency virus type 1 (HIV-1) infection, but little is known about the mechanisms that determine the expansion of these antiviral NK cell populations during acute HIV-1 infection. Here we demonstrate that NK cells expressing the activating receptor KIR3DS1+ and, to a lesser extent, the inhibitory receptor KIR3DL1+ specifically expand in acute HIV-1 infection in the presence of HLA-B Bw480I, the putative HLA class I ligand for KIR3DL1/3DS1. These data demonstrate for the first time the HLA class I subtype-dependent expansion of specific KIR+ NK cells during an acute viral infection in humans.


2005 ◽  
Vol 79 (22) ◽  
pp. 13953-13962 ◽  
Author(s):  
Anita Milicic ◽  
Charles T. T. Edwards ◽  
Stéphane Hué ◽  
Julie Fox ◽  
Helen Brown ◽  
...  

ABSTRACT Antigenic variation inherent in human immunodeficiency virus type 1 (HIV-1) virions that successfully instigate new infections transferred by sex has not been well defined. Yet this is the viral “challenge” which any vaccine-induced immunity must deal with. Closely timed comparisons of the virus circulating in the “donor” and that which initiates new infection are difficult to carry out rigorously, as suitable samples are very hard to get in the face of ethical hurdles. Here we investigate HIV-1 variation in four homosexual couples where we sampled blood from both parties within several weeks of the estimated transmission event. We analyzed variation within highly immunogenic HIV-1 internal proteins encoding epitopes recognized by cytotoxic Tlymphocytes (CTLs). These responses are believed to be crucial as a means of containing viral replication. In the donors we detected virions capable of evading host CTL recognition at several linked epitopes of distinct HLA class I restriction. When a donor transmitted escape variants to a recipient with whom he had HLA class I molecules in common, the recipient's CTL response to those epitopes was prevented, thus impeding adequate viral control. In addition, we show that even when HLA class I alleles are disparate in the transmitting couple, a single polymorphism can abolish CTL recognition of an overlapping epitope of distinct restriction and so confer immune escape properties to the recipient's seroconversion virus. In donors who are themselves controlling an early, acute infection, the precise timing of onward transmission is a crucial determinant of the viral variants available to compose the inoculum.


2000 ◽  
Vol 182 (5) ◽  
pp. 1523-1526 ◽  
Author(s):  
Alicia Habegger de Sorrentino ◽  
Karina Marinic ◽  
Patricia Motta ◽  
Adrián Sorrentino ◽  
Roxana López ◽  
...  

1999 ◽  
Vol 15 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Jianming Tang ◽  
Caroline Costello ◽  
Ireneus P.M. Keet ◽  
Charles Rivers ◽  
Susan Leblanc ◽  
...  

2006 ◽  
Vol 80 (3) ◽  
pp. 1311-1320 ◽  
Author(s):  
Eduardo O'Neill ◽  
Lillian S. Kuo ◽  
John F. Krisko ◽  
Diana R. Tomchick ◽  
J. Victor Garcia ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) early gene product Nef is a multifunctional protein that alters numerous pathways of T-cell function, including endocytosis, signal transduction, vesicular trafficking, and immune modulation, and is a major determinant of pathogenesis. Individual Nef functions include PAK-2 activation, CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, and enhancement of viral particle infectivity. How Nef accomplishes its multiple tasks presents a difficult problem of mechanistic analysis because of the complications associated with multiple, overlapping functional domains in the context of significant sequence variability. To address these issues we determined the conservation of each Nef residue based on 1,643 subtype B Nef sequences. Mutational analysis based on conservative substitutions and Nef sequence data allowed us to search for amino acids on the surface of Nef that are specifically required for PAK-2 activation. We found residues 85, 89, and 191 to be highly significant determinants for Nef's PAK-2 activation function but functionally unlinked to CD4 and MHC class I downregulation or enhancement of infectivity. These residues are not conserved across HIV-1 subtypes but are confined to separate sets of surface elements within a subtype. Thus, L85/H89/F191 and F85/F89/R191 are dominant in subtype B and subtype E or C, respectively. Our results provide support for developing subtype-specific interventions in HIV-1 disease.


2000 ◽  
Vol 74 (8) ◽  
pp. 3918-3923 ◽  
Author(s):  
Dexter T. K. Poon ◽  
Lori V. Coren ◽  
David E. Ott

ABSTRACT HLA class II DR is one of the most abundant cell surface proteins incorporated onto human immunodeficiency virus type 1 (HIV-1) during budding. The mechanism for HLA class II protein incorporation is not known and may involve a viral protein. To determine whether Env affects HLA class II protein incorporation, HIV-1 virions, either with or without Env on their surface, were produced from HLA class II-expressing cells and analyzed by whole-virus immunoprecipitation with antisera against HLA class II proteins. HLA class II proteins were detected on virions only when wild-type Env was incorporated, while similar experiments showed that HLA class I proteins were incorporated independent of Env packaging. Therefore, the packaging of HIV-1 Env protein is required for the efficient incorporation of HLA class II but not class I proteins into the virion. Analysis of two Env mutants revealed that the presence of a 43-amino-acid sequence between amino acids 708 and 750 in the gp41TM cytoplasmic tail was required for efficient incorporation of HLA class II proteins. These data show that HIV-1 actively incorporates HLA class II proteins in a process that, either directly or indirectly, requires Env.


Sign in / Sign up

Export Citation Format

Share Document