scholarly journals Replacement of the P1 Amino Acid of Human Immunodeficiency Virus Type 1 Gag Processing Sites Can Inhibit or Enhance the Rate of Cleavage by the Viral Protease

2002 ◽  
Vol 76 (20) ◽  
pp. 10226-10233 ◽  
Author(s):  
Steve C. Pettit ◽  
Gavin J. Henderson ◽  
Celia A. Schiffer ◽  
Ronald Swanstrom

ABSTRACT Processing of the human immunodeficiency virus type 1 (HIV-1) Gag precursor is highly regulated, with differential rates of cleavage at the five major processing sites to give characteristic processing intermediates. We examined the role of the P1 amino acid in determining the rate of cleavage at each of these five sites by using libraries of mutants generated by site-directed mutagenesis. Between 12 and 17 substitution mutants were tested at each P1 position in Gag, using recombinant HIV-1 protease (PR) in an in vitro processing reaction of radiolabeled Gag substrate. There were three sites in Gag (MA/CA, CA/p2, NC/p1) where one or more substitutions mediated enhanced rates of cleavage, with an enhancement greater than 60-fold in the case of NC/p1. For the other two sites (p2/NC, p1/p6), the wild-type amino acid conferred optimal cleavage. The order of the relative rates of cleavage with the P1 amino acids Tyr, Met, and Leu suggests that processing sites can be placed into two groups and that the two groups are defined by the size of the P1′ amino acid. These results point to a trans effect between the P1 and P1′ amino acids that is likely to be a major determinant of the rate of cleavage at the individual sites and therefore also a determinant of the ordered cleavage of the Gag precursor.

2005 ◽  
Vol 79 (19) ◽  
pp. 12447-12454 ◽  
Author(s):  
M. Mink ◽  
S. M. Mosier ◽  
S. Janumpalli ◽  
D. Davison ◽  
L. Jin ◽  
...  

ABSTRACT Enfuvirtide (ENF), a novel human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, has potent antiviral activity against HIV-1 both in vitro and in vivo. Resistance to ENF observed after in vitro passaging was associated with changes in a three-amino-acid (aa) motif, GIV, at positions 36 to 38 of gp41. Patients with ongoing viral replication while receiving ENF during clinical trials acquired substitutions within gp41 aa 36 to 45 in the first heptad repeat (HR-1) of gp41 in both population-based plasma virus sequences and proviral DNA sequences from isolates showing reduced susceptibilities to ENF. To investigate their impact on ENF susceptibility, substitutions were introduced into a modified pNL4-3 strain by site-directed mutagenesis, and the susceptibilities of mutant viruses and patient-derived isolates to ENF were tested. In general, susceptibility decreases for single substitutions were lower than those for double substitutions, and the levels of ENF resistance seen for clinical isolates were higher than those observed for the site-directed mutant viruses. The mechanism of ENF resistance was explored for a subset of the substitutions by expressing them in the context of a maltose binding protein chimera containing a portion of the gp41 ectodomain and measuring their binding affinity to fluorescein-labeled ENF. Changes in binding affinity for the mutant gp41 fusion proteins correlated with the ENF susceptibilities of viruses containing the same substitutions. The combined results support the key role of gp41 aa 36 to 45 in the development of resistance to ENF and illustrate that additional envelope regions contribute to the ENF susceptibility of fusion inhibitor-naïve viruses and resistance to ENF.


2001 ◽  
Vol 75 (21) ◽  
pp. 10479-10487 ◽  
Author(s):  
Raj Shankarappa ◽  
Ramdas Chatterjee ◽  
Gerald H. Learn ◽  
Dhruba Neogi ◽  
Ming Ding ◽  
...  

ABSTRACT India is experiencing a rapid spread of human immunodeficiency virus type 1 (HIV-1), primarily through heterosexual transmission of subtype C viruses. To delineate the molecular features of HIV-1 circulating in India, we sequenced the V3-V4 region of viralenv from 21 individuals attending an HIV clinic in Calcutta, the most populous city in the eastern part of the country, and analyzed these and the other Indian sequences in the HIV database. Twenty individuals were infected with viruses having a subtype Cenv, and one had viruses with a subtype Aenv. Analyses of 192 subtype C sequences that included one sequence for each subject from this study and from the HIV database revealed that almost all sequences from India, along with a small number from other countries, form a phylogenetically distinct lineage within subtype C, which we designate CIN. Overall, CIN lineage sequences were more closely related to each other (level of diversity, 10.2%) than to subtype C sequences from Botswana, Burundi, South Africa, Tanzania, and Zimbabwe (range, 15.3 to 20.7%). Of the three positions identified as signature amino acid substitution sites for CIN sequences (K340E, K350A, and G429E), 56% of the CIN sequences contained all three amino acids while 87% of the sequences contained at least two of these substitutions. Among the non-CINsequences, all three amino acids were present in 2%, while 22% contained two or more of these amino acids. These results suggest that much of the current Indian epidemic is descended from a single introduction into the country. Identification of conserved signature amino acid positions could assist epidemiologic tracking and has implications for the development of a vaccine against subtype C HIV-1 in India.


1998 ◽  
Vol 72 (10) ◽  
pp. 8420-8424 ◽  
Author(s):  
Peter J. King ◽  
W. Edward Robinson

ABSTRACT l-Chicoric acid is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase in vitro and of HIV-1 replication in tissue culture. Following 3 months of selection in the presence of increasing concentrations of l-chicoric acid, HIV-1 was completely resistant to the compound. Introduction of the mutant integrase containing a single glycine-to-serine amino acid change at position 140 into the native, l-chicoric acid-sensitive virus demonstrated that this change was sufficient to confer resistance to l-chicoric acid. These results confirm through natural selection previous biochemical studies showing thatl-chicoric acid inhibits integrase and that the drug is likely to interact at residues near the catalytic triad in the integrase active site.


1997 ◽  
Vol 41 (6) ◽  
pp. 1313-1318 ◽  
Author(s):  
M Tanaka ◽  
R V Srinivas ◽  
T Ueno ◽  
M F Kavlick ◽  
F K Hui ◽  
...  

2'-beta-Fluoro-2',3'-dideoxyadenosine (F-ddA) is an acid-stable purine dideoxynucleoside analog active against a wide spectrum of human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains in vitro. F-ddA is presently undergoing a phase I clinical trial at the National Cancer Institute. We induced HIV-1 variants resistant to F-ddA by exposing wild-type HIV-1 (HIV-1LAI) to increasing concentrations of F-ddA in vitro. After 18 passages, the virus was fourfold less sensitive to F-ddA than HIV-1LAI. Sequence analyses of the passage 18 virus revealed changes in three amino acids in the reverse transcriptase (RT)-encoding region of the pol gene: P to S at codon 119 (P119S; present in 3 of 13 and 28 of 28 molecular clones before and after F-ddA exposure, respectively), V179D (0 of 13 and 9 of 28, respectively), and L214F (9 of 13 and 28 of 28, respectively). Drug sensitivity assays using recombinant infectious clones confirmed that P119S was directly responsible for the reduced sensitivity of HIV-1 to F-ddA. Various infectious clones with single or multiple amino acid substitutions conferring viral resistance against nucleoside RT inhibitors, including HIV-1 variants with multi-dideoxynucleoside resistance, were generally sensitive to F-ddA. The moderate level of resistance of HIV-1 to F-ddA, together with the lack of conferment of significant cross-resistance by the F-ddA-associated amino acid substitutions, warrants further investigation of F-ddA as a potential antiviral agent for use in treatment of HIV-1 infection.


2007 ◽  
Vol 81 (8) ◽  
pp. 3757-3768 ◽  
Author(s):  
Junji Shibata ◽  
Kazuhisa Yoshimura ◽  
Akiko Honda ◽  
Atsushi Koito ◽  
Toshio Murakami ◽  
...  

ABSTRACT KD-247, a humanized monoclonal antibody to an epitope of gp120-V3 tip, has potent cross-neutralizing activity against subtype B primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess how KD-247 escape mutants can be generated, we induced escape variants by exposing bulked primary R5 virus, MOKW, to increasing concentrations of KD-247 in vitro. In the presence of relatively low concentrations of KD-247, viruses with two amino acid mutations (R166K/D167N) in V2 expanded, and under high KD-247 pressure, a V3 tip substitution (P313L) emerged in addition to the V2 mutations. However, a virus with a V2 175P mutation dominated during passaging in the absence of KD-247. Using domain swapping analysis, we demonstrated that the V2 mutations and the P313L mutation in V3 contribute to partial and complete resistance phenotypes against KD-247, respectively. To identify the V2 mutation responsible for the resistance to KD-247, we constructed pseudoviruses with single or double amino acid mutations in V2 and measured their sensitivity to neutralization. Interestingly, the neutralization phenotypes were switched, so that amino acid residue 175 (Pro or Leu) located in the center of V2 was exchanged, indicating that the amino acid at position 175 has a crucial role, dramatically changing the Env oligomeric state on the membrane surface and affecting the neutralization phenotype against not only anti-V3 antibody but also recombinant soluble CD4. These data suggested that HIV-1 can escape from anti-V3 antibody attack by changing the conformation of the functional envelope oligomer by acquiring mutations in the V2 region in environments with relatively low antibody concentrations.


1989 ◽  
Vol 86 (17) ◽  
pp. 6768-6772 ◽  
Author(s):  
K Javaherian ◽  
A J Langlois ◽  
C McDanal ◽  
K L Ross ◽  
L I Eckler ◽  
...  

The principal neutralizing determinant of human immunodeficiency virus type 1 (HIV-1) is located in the external envelope protein, gp120, and has previously been mapped to a 24-amino acid-long sequence (denoted RP135). We show here that deletion of this sequence renders the envelope unable to elicit neutralizing antibodies. In addition, using synthetic peptide fragments of RP135, we have mapped the neutralizing determinant to 8 amino acids and found that a peptide of this size elicits neutralizing antibodies. This sequence contains a central Gly-Pro-Gly that is generally conserved between different HIV-1 isolates and is flanked by amino acids that differ from isolate to isolate. Antibodies elicited by peptides from one isolate do not neutralize two different isolates, and a hybrid peptide, consisting of amino acid sequences from two isolates, elicits neutralizing antibodies to both isolates. By using a mixture of peptides of this domain or a mixture of such hybrid peptides the type-specificity of the neutralizing antibody response to this determinant can perhaps be overcome.


2005 ◽  
Vol 25 (18) ◽  
pp. 8126-8138 ◽  
Author(s):  
Shohreh Amini ◽  
Giuseppe Mameli ◽  
Luis Del Valle ◽  
Anna Skowronska ◽  
Krzysztof Reiss ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Tat is a potent transcriptional activator of the HIV-1 promoter and also has the ability to modulate a number of cellular regulatory circuits including apoptosis. Tat exerts its effects through interaction with viral as well as cellular proteins. Here, we studied the influence of p73, a protein that is implicated in apoptosis and cell cycle control, on Tat functions in the central nervous system. Protein interaction studies using immunoprecipitation followed by Western blot and glutathione S-transferase pull-down assays demonstrated the association of Tat with p73. Tat bound to the N-terminal region of p73 spanning amino acids 1 to 120, and this interaction required the cysteine-rich domain (amino acids 30 to 40) of Tat. Association of p73 with Tat prevented the acetylation of Tat on lysine 28 by PCAF. Functional studies including RNA interference showed that p73 inhibited Tat stimulation of the HIV-1 promoter. Furthermore, p73 prevented the interaction of Tat with cyclin T1 in vitro but not in vivo. These findings suggest possible new therapeutic approaches, using p73, for Tat-mediated AIDS pathogenesis.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


1999 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David E. Ott ◽  
Elena N. Chertova ◽  
Laura K. Busch ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi ◽  
...  

ABSTRACT The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


Sign in / Sign up

Export Citation Format

Share Document