scholarly journals Direct Binding of Human Immunodeficiency Virus Type 1 Nef to the Major Histocompatibility Complex Class I (MHC-I) Cytoplasmic Tail Disrupts MHC-I Trafficking

2002 ◽  
Vol 76 (23) ◽  
pp. 12173-12184 ◽  
Author(s):  
Maya Williams ◽  
Jeremiah F. Roeth ◽  
Matthew R. Kasper ◽  
Rebekah I. Fleis ◽  
Chris G. Przybycin ◽  
...  

ABSTRACT Nef, an essential pathogenic determinant for human immunodeficiency virus type 1, has multiple functions that include disruption of major histocompatibility complex class I molecules (MHC-I) and CD4 and CD28 cell surface expression. The effects of Nef on MHC-I have been shown to protect infected cells from cytotoxic T-lymphocyte recognition by downmodulation of a subset of MHC-I (HLA-A and -B). The remaining HLA-C and -E molecules prevent recognition by natural killer (NK) cells, which would otherwise lyse cells expressing small amounts of MHC-I. Specific amino acid residues in the MHC-I cytoplasmic tail confer sensitivity to Nef, but their function is unknown. Here we show that purified Nef binds directly to the HLA-A2 cytoplasmic tail in vitro and that Nef forms complexes with MHC-I that can be isolated from human cells. The interaction between Nef and MHC-I appears to be weak, indicating that it may be transient or stabilized by other factors. Supporting the fact that these molecules interact in vivo, we found that Nef colocalizes with HLA-A2 molecules in a perinuclear distribution inside cells. In addition, we demonstrated that Nef fails to bind the HLA-E tail and also fails to bind HLA-A2 tails with deletions of amino acids necessary for MHC-I downmodulation. These data provide an explanation for differential downmodulation of MHC-I allotypes by Nef. In addition, they provide the first direct evidence indicating that Nef functions as an adaptor molecule able to link MHC-I to cellular trafficking proteins.

2005 ◽  
Vol 79 (1) ◽  
pp. 632-636 ◽  
Author(s):  
Maya Williams ◽  
Jeremiah F. Roeth ◽  
Matthew R. Kasper ◽  
Tracey M. Filzen ◽  
Kathleen L. Collins

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef is a critical protein that is necessary for HIV pathogenesis. Its roles include the disruption of major histocompatibility complex class I (MHC-I) and CD4 trafficking to promote immune evasion and viral spread. Mutational analyses have revealed that separate domains of Nef are required to affect these two molecules. To further elucidate how Nef disrupts MHC-I trafficking in T cells, we examined the role of protein domains that are required for this function (N-terminal alpha helix, polyproline, acidic, and oligomerization domains). We found that each of these regions was required for Nef to disrupt the transport of HLA-A2 to the cell surface and for Nef to coprecipitate with HLA-A2.


2006 ◽  
Vol 87 (8) ◽  
pp. 2291-2296 ◽  
Author(s):  
Nicoletta Casartelli ◽  
Giorgia Giolo ◽  
Francesca Neri ◽  
Claudia Haller ◽  
Marina Potestà ◽  
...  

The Nef protein is a crucial pathogenicity factor of human immunodeficiency virus type 1 (HIV-1) that contains a proline-rich motif consisting of four conserved prolines: Pro69 (P69), P72, P75 and P78. P72 and P75 were shown to bind Src homology domains 3 (SH3) and have been implicated in many biological functions of Nef, including downmodulation of cell-surface major histocompatibility complex class I (MHC-I). P78 is involved together with P69 in positioning of the Nef–SH3 complex and it has been shown to be essential for Nef activity of MHC-I downmodulation. It is shown here that alteration of P78 affects recycling of MHC-I molecules to the cell surface, but does not interfere with SH3 binding. In addition, it is demonstrated that P72 and P75, and thus the SH3-binding capacity, are fully dispensable for Nef activity on MHC-I.


2003 ◽  
Vol 77 (21) ◽  
pp. 11536-11545 ◽  
Author(s):  
Nicoletta Casartelli ◽  
Gigliola Di Matteo ◽  
Marina Potestà ◽  
Paolo Rossi ◽  
Margherita Doria

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) nef gene is a crucial determinant in AIDS disease progression. Although several in vitro activities have been attributed to the Nef protein, identifying the one critical for in vivo pathogenicity remains elusive. In this study, we examined a large number of nef alleles derived at various time points from 13 perinatally infected children showing different progression rates: six nonprogressors (NPs), three slow progressors (SPs), and four rapid progressors (RPs). The patient-derived nef alleles were analyzed for their steady-state expression of a Nef protein, for their relative ability to downregulate cell surface expression of CD4 and major histocompatibility complex class I (MHC-I) and for their capacity to bind the clathrin adaptor AP-1 complex. We found that NP-derived nef alleles, compared to nef alleles isolated from SPs and RPs, had reduced CD4 and MHC-I downregulation activities. In contrast, SP- and RP-derived nef alleles did not differ and efficiently downregulated both CD4 and MHC-I. AP-1 binding was a conserved function of primary nef alleles not correlated with clinical progression. Defective Nef proteins from NPs, rather than sharing common specific changes in their sequences, accumulated various amino acid substitutions, mainly located outside the conserved domains previously associated with Nef biological properties. Our data indicate that Nef-mediated downregulation of cell surface CD4 and MHC-I significantly contributes to the expression of the pathogenic potential of HIV-1.


2008 ◽  
Vol 82 (17) ◽  
pp. 8373-8382 ◽  
Author(s):  
Hélène Toussaint ◽  
François-Xavier Gobert ◽  
Michael Schindler ◽  
Carina Banning ◽  
Patrycja Kozik ◽  
...  

ABSTRACT The lentiviral Nef protein has been studied extensively for its ability to induce the downregulation of several immunoreceptors on the surfaces of infected cells. However, Nef expression is unique in inducing highly effective upregulation of the major histocompatibility complex class II-associated chaperone invariant (Ii) chain complexes in different cell types. Under normal conditions, endocytosis of the Ii chain and other molecules, like the transferrin receptor and CD4, is rapid and AP-2 dependent. Human immunodeficiency virus type 1 (HIV-1) Nef expression strongly reduces the internalization of the Ii chain, enhances that of CD4, and does not modify transferrin uptake. The mutation of AP-2 binding motifs LL164 and DD174 in Nef leads to the inhibition of Ii chain upregulation. In AP-2-depleted cells, surface levels of the Ii chain are high and remain unmodified by Nef expression, further indicating that Nef regulates Ii chain internalization via the AP-2 pathway. Immunoprecipitation experiments revealed that the Ii chain can interact with Nef in a dileucine-dependent manner. Importantly, we have shown that Nef-induced CD4 downregulation and Ii chain upregulation are genetically distinguishable. We have identified natural nef alleles that have lost one of the two functions but not the other one. Moreover, we have characterized Nef mutant forms possessing a similar phenotype in the context of HIV-1 infection. Therefore, the Nef-induced accumulation of Ii chain complexes at the cell surface probably results from a complex mechanism leading to the impairment of AP-2-mediated endocytosis rather than from direct competition between Nef and the Ii chain for binding AP-2.


2002 ◽  
Vol 76 (4) ◽  
pp. 1626-1631 ◽  
Author(s):  
Otto O. Yang ◽  
Phuong Thi Nguyen ◽  
Spyros A. Kalams ◽  
Tanya Dorfman ◽  
Heinrich G. Göttlinger ◽  
...  

ABSTRACT Although Nef has been proposed to effect the escape of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTL) through downmodulation of major histocompatibility complex class I molecules, little direct data have been presented previously to support this hypothesis. By comparing nef-competent and nef-deleted HIV-1 strains in an in vitro coculture system, we demonstrate that the presence of this viral accessory gene leads to impairment of the ability of HIV-1-specific CTL clones to suppress viral replication. Furthermore, inhibition by genetically modified CTL that do not require major histocompatibility complex class I-presented antigen (expressing the CD4 T-cell receptor [TCR] ζ-chain hybrid receptor) is similar for both nef-competent and -deleted strains, indicating that Nef does not impair the effector functions of CTL but acts at the level of TCR triggering. In contrast, we note that another accessory gene, vpr, does not induce resistance of HIV-1 to suppression by CTL clones. We conclude that Nef (and not Vpr) contributes to functional HIV-1 immune evasion and that this effect is mediated by diminished antigen presentation to CTL.


2007 ◽  
Vol 82 (3) ◽  
pp. 1249-1258 ◽  
Author(s):  
Colleen M. Noviello ◽  
Serge Benichou ◽  
John C. Guatelli

ABSTRACT Human immunodeficiency virus type 1 Nef provides immune evasion by decreasing the expression of major histocompatibility complex class I (MHC-I) at the surfaces of infected cells. The endosomal clathrin adaptor protein complex AP-1 is a key cellular cofactor for this activity, and it is recruited to the MHC-I cytoplasmic domain (CD) in the presence of Nef by an uncharacterized mechanism. To determine the molecular basis of this recruitment, we used an MHC-I CD-Nef fusion protein to represent the MHC-I CD/Nef complex during protein interaction assays. The MHC-I CD had no intrinsic ability to bind AP-1, but it conferred binding activity when fused to Nef. This activity was independent of the canonical leucine-based AP-binding motif in Nef; it required residue Y320 in the MHC-I CD and residues E62-65 and P78 in Nef, and it involved the μ but not the γ/σ subunits of AP-1. The impaired binding of mutants encoding substitutions of E62-65 or P78 in Nef was rescued by replacing the Y320SQA sequence in the MHC-I CD with YSQL, suggesting that Nef allows the YSQA sequence to act as if it were a canonical μ-binding motif. These data identify the μ subunit of AP-1 (μ1) as the key target of the MHC-I CD/Nef complex, and they indicate that both Y320 in the MHC-I CD and E62-65 in Nef interact directly with μ1. The data support a cooperative binding model in which Nef functions as a clathrin-associated sorting protein that allows recognition of an incomplete, tyrosine-based μ-binding signal in the MHC-I CD by AP-1.


2007 ◽  
Vol 81 (9) ◽  
pp. 4776-4786 ◽  
Author(s):  
C. M. Noviello ◽  
S. L. Kosakovsky Pond ◽  
M. J. Lewis ◽  
D. D. Richman ◽  
S. K. Pillai ◽  
...  

ABSTRACT Viruses encounter changing selective pressures during transmission between hosts, including host-specific immune responses and potentially varying functional demands on specific proteins. The human immunodeficiency virus type 1 Nef protein performs several functions potentially important for successful infection, including immune escape via down-regulation of class I major histocompatibility complex (MHC-I) and direct enhancement of viral infectivity and replication. Nef is also a major target of the host cytotoxic T-lymphocyte (CTL) response. To examine the impact of changing selective pressures on Nef functions following sexual transmission, we analyzed genetic and functional changes in nef clones from six transmission events. Phylogenetic analyses indicated that the diversity of nef was similar in both sources and acutely infected recipients, the patterns of selection across transmission were variable, and regions of Nef associated with distinct functions evolved similarly in sources and recipients. These results weighed against the selection of specific Nef functions by transmission or during acute infection. Measurement of Nef function provided no evidence that the down-regulation of either CD4 or MHC-I was optimized by transmission or during acute infection, although rare nef clones from sources that were impaired in these activities were not detected in recipients. Nef-specific CTL activity was detected as early as 3 weeks after infection and appeared to be an evolutionary force driving the diversification of nef. Despite the change in selective pressure between the source and recipient immune systems and concomitant genetic diversity, the majority of Nef proteins maintained robust abilities to down-regulate MHC-I and CD4. These data suggest that both functions are important for the successful establishment of infection in a new host.


Sign in / Sign up

Export Citation Format

Share Document