scholarly journals Interaction of Translation Initiation Factor eIF4B with the Poliovirus Internal Ribosome Entry Site

2002 ◽  
Vol 76 (5) ◽  
pp. 2113-2122 ◽  
Author(s):  
Kerstin Ochs ◽  
Lanja Saleh ◽  
Gergis Bassili ◽  
Volker H. Sonntag ◽  
Amandus Zeller ◽  
...  

ABSTRACT Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.

1999 ◽  
Vol 73 (9) ◽  
pp. 7505-7514 ◽  
Author(s):  
Kerstin Ochs ◽  
RenéC. Rust ◽  
Michael Niepmann

ABSTRACT Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation.


2001 ◽  
Vol 82 (4) ◽  
pp. 757-763 ◽  
Author(s):  
Lanja Saleh ◽  
René C. Rust ◽  
Ralf Füllkrug ◽  
Ewald Beck ◽  
Gergis Bassili ◽  
...  

In the life-cycle of picornaviruses, the synthesis of the viral polyprotein is initiated cap-independently at the internal ribosome entry site (IRES) far downstream from the 5′ end of the viral plus-strand RNA. The cis-acting IRES RNA elements serve as binding sites for translation initiation factors that guide the ribosomes to an internal site of the viral RNA. In this study, we show that the eukaryotic translation initiation factor eIF4G interacts directly with the IRES of foot-and-mouth disease virus (FMDV). eIF4G binds mainly to the large Y-shaped stem–loop 4 RNA structure in the 3′ region of the FMDV IRES element, whereas stem–loop 5 contributes only slightly to eIF4G binding. Two subdomains of stem–loop 4 are absolutely essential for eIF4G binding, whereas another subdomain contributes to a lesser extent to binding of eIF4G. At the functional level, the translational activity of stem–loop 4 subdomain mutants correlates with the efficiency of binding of eIF4G in the UV cross-link assay. This indicates that the interaction of eIF4G with the IRES is crucial for the initiation of FMDV translation. A model for the interaction of initiation factors with the IRES element is discussed.


1999 ◽  
Vol 73 (7) ◽  
pp. 6111-6113 ◽  
Author(s):  
René C. Rust ◽  
Kerstin Ochs ◽  
Karsten Meyer ◽  
Ewald Beck ◽  
Michael Niepmann

ABSTRACT Eukaryotic translation initiation factor 4B (eIF4B) binds directly to the internal ribosome entry site (IRES) of foot-and-mouth disease virus (FMDV). Mutations in all three subdomains of the IRES stem-loop 4 reduce binding of eIF4B and translation efficiency in parallel, indicating that eIF4B is functionally involved in FMDV translation initiation. In reticulocyte lysate devoid of polypyrimidine tract-binding protein (PTB), eIF4B still bound well to the wild-type IRES, even after removal of the major PTB-binding site. In conclusion, the interaction of eIF4B with the FMDV IRES is essential for IRES function but independent of PTB.


2002 ◽  
Vol 76 (5) ◽  
pp. 2062-2074 ◽  
Author(s):  
N. Muge Kuyumcu-Martinez ◽  
Michelle Joachims ◽  
Richard E. Lloyd

ABSTRACT Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.


2003 ◽  
Vol 77 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Kerstin Ochs ◽  
Amandus Zeller ◽  
Lanja Saleh ◽  
Gergis Bassili ◽  
Yutong Song ◽  
...  

ABSTRACT In the oral poliovirus vaccine, three attenuated virus strains generated by Albert Sabin are used. However, insufficient genetic stability of these strains causes major problems in poliovirus eradication. In infected cells, translation of the plus-strand poliovirus RNA genome is directed by the internal ribosome entry site (IRES), a cis-acting RNA element that facilitates the cap-independent binding of ribosomes to an internal site of the viral RNA. In each Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence attenuation. Here we report how these decisive mutations in the IRES confer a reduction in poliovirus translation efficiency. These single-nucleotide exchanges impair the interaction of the standard translation initiation factor eIF4G with the IRES domain V. Moreover, binding of eIF4B and the polypyrimidine tract-binding protein and the association of ribosomes with the viral RNA are affected by these mutations. However, the negative effects of the IRES mutations are completely relieved by addition of purified eIF4F. This indicates that eIF4G is the crucial factor that initially binds to the poliovirus IRES and recruits the IRES to the other components of the translational apparatus, while impaired binding of eIF4G plays a key role in attenuation of poliovirus neurovirulence.


2005 ◽  
Vol 79 (2) ◽  
pp. 677-683 ◽  
Author(s):  
Randal C. Cevallos ◽  
Peter Sarnow

ABSTRACT The Taura syndrome virus (TSV), a member of the Dicistroviridae family of viruses, is a single-stranded positive-sense RNA virus which contains two nonoverlapping reading frames separated by a 230-nucleotide intergenic region. This intergenic region contains an internal ribosome entry site (IRES) which directs the synthesis of the TSV capsid proteins. Unlike other dicistroviruses, the TSV IRES contains an AUG codon that is in frame with the capsid region, suggesting that the IRES initiates translation at this AUG codon by using initiator tRNAmet. We show here that the TSV IRES does not use this or any other AUG codon to initiate translation. Like the IRES in cricket paralysis virus (CrPV), the TSV IRES can assemble 80S ribosomes in the absence of initiation factors and can direct protein synthesis in a reconstituted system that contains only purified ribosomal subunits, eukaryotic elongation factors 1A and 2, and aminoacylated tRNAs. The functional conservation of the CrPV-like IRES elements in viruses that can infect different invertebrate hosts suggests that initiation at non-AUG codons by an initiation factor-independent mechanism may be more prevalent.


Sign in / Sign up

Export Citation Format

Share Document