scholarly journals The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Permits Replication of Terminal Repeat-Containing Plasmids

2003 ◽  
Vol 77 (7) ◽  
pp. 4470-4470 ◽  
Author(s):  
Adam Grundhoff ◽  
Don Ganem
2002 ◽  
Vol 76 (22) ◽  
pp. 11677-11687 ◽  
Author(s):  
Jianhong Hu ◽  
Alexander C. Garber ◽  
Rolf Renne

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The latency-associated nuclear antigen (LANA) is a multifunctional protein that is consistently expressed in all KSHV-associated malignancies. LANA interacts with a variety of cellular proteins, including the transcriptional cosuppressor complex mSin3 and the tumor suppressors p53 and Rb, thereby regulating viral and cellular gene expression. In addition, LANA is required for maintenance of the episomal viral DNA during latency in dividing cells. Colocalization studies suggest that LANA tethers the viral genome to chromosomes during mitosis. In support of this model, a specific LANA- binding site has recently been identified within the terminal repeat unit, and a chromatin interaction domain was mapped to a short amino acid stretch within the N-terminal domain of LANA. Epstein-Barr virus nuclear antigen 1 (EBNA-1), a functional homologue of LANA, is also required for genome segregation; in addition, EBNA-1 also supports efficient DNA replication of oriP-containing plasmids. By performing short-term replication assays, we demonstrate here for the first time that de novo synthesis of terminal-repeat (TR)-containing plasmids is highly dependent on the presence of LANA. We map the required cis-acting sequences within the TR to a 79-bp region and demonstrate that the DNA-binding domain of LANA is required for this DNA replication activity. Surprisingly, the 233-amino-acid C domain of LANA by itself partially supports replication. Our data show that LANA is a sequence-specific DNA-binding protein that, like EBNA-1, plays an important role in DNA replication and genome segregation. In addition, we show that all necessary cis elements for the origin of replication (ori) function are located within a single TR, suggesting that the putative ori of KSHV is different from those of other gammaherpesviruses, which all contain ori sequences within the unique long sequence outside of their TR. This notion is further strengthened by the unique modular structure of the KSHV TR element.


2004 ◽  
Vol 78 (14) ◽  
pp. 7299-7310 ◽  
Author(s):  
Shuhei Sakakibara ◽  
Keiji Ueda ◽  
Ken Nishimura ◽  
Eunju Do ◽  
Eriko Ohsaki ◽  
...  

ABSTRACT In the latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), its 160-kb circularized episomal DNA is replicated and maintained in the host nucleus. KSHV latency-associated nuclear antigen (LANA) is a key factor for maintaining viral latency. LANA binds to the terminal repeat (TR) DNA of the viral genome, leading to its localization to specific dot structures in the nucleus. In such an infected cell, the expression of the viral genes is restricted by a mechanism that is still unclear. Here, we found that LANA interacts with SUV39H1 histone methyltransferase, a key component of heterochromatin formation, as determined by use of a DNA pull-down assay with a biotinylated DNA fragment that contained a LANA-specific binding sequence and a maltose-binding protein pull-down assay. The diffuse localization of LANA on the chromosomes of uninfected cells changed to a punctate one with the introduction of a bacterial artificial chromosome containing most of the TR region, and SUV39H1 clearly colocalized with the LANA-associated dots. Thus, the LANA foci in KSHV-infected cells seemed to include SUV39H1 as well as heterochromatin protein 1. Furthermore, a chromatin immunoprecipitation assay revealed that the TR and the open reading frame (ORF) K1 and ORF50/RTA genes, but not the ORF73/LANA gene, lay within the heterochromatin during KSHV latency. Taken together, these observations indicate that LANA recruits heterochromatin components to the viral genome, which may lead to the establishment of viral latency and govern the transcription program.


2006 ◽  
Vol 81 (7) ◽  
pp. 3402-3413 ◽  
Author(s):  
Subhash C. Verma ◽  
Tathagata Choudhuri ◽  
Erle S. Robertson

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) persists as episomes in infected cells by circularizing at the terminal repeats (TRs). The KSHV episome carries multiple reiterated copies of the terminal repeat, and each copy is capable of supporting replication. Expression of the latency-associated nuclear antigen (LANA) is critical for the replication of TR-containing plasmids. A 32-bp sequence upstream of LANA binding site 1 (LBS1), referred to as RE (replication element), along with LANA binding sites 1 and 2 (RE-LBS1/2), is sufficient to support replication (J. Hu and R. Renne, J. Virol. 79:2637-2642, 2005). In this report we demonstrate that the minimal replicator element (RE-LBS1/2) replicates in synchrony with the host cellular DNA, and only once, in a cell-cycle-dependent manner. Overexpression of the mammalian replication inhibitor geminin blocked replication of the plasmid containing the minimal replicator element, confirming the involvement of the host cellular replication control mechanism, and prevented rereplication of the plasmid in the same cell cycle. Overexpression of Cdt1 also rescued the replicative ability of the RE-LBS1/2-containing plasmids. A chromatin immunoprecipitation assay performed using anti-origin recognition complex 2 (α-ORC2) and α-LANA antibodies from cells transfected with RE-LBS1/2, RE-LBS1, LBS1, or RE showed the association of ORC2 with the RE region. Expression of LANA increased the number of copies of chromatin-bound DNA of replication elements, suggesting that LANA is important for the recruitment of ORCs and may contribute to the stabilization of the replication protein complexes at the RE site.


2004 ◽  
Vol 78 (18) ◽  
pp. 9936-9946 ◽  
Author(s):  
Eriko Ohsaki ◽  
Keiji Ueda ◽  
Shuhei Sakakibara ◽  
Eunju Do ◽  
Kaori Yada ◽  
...  

ABSTRACT During latency, Kaposi's sarcoma-associated herpesvirus (KSHV) is thought to replicate once and to be partitioned in synchrony with the cell cycle of the host. In this replication cycle, the KSHV terminal repeat (TR) sequence functions as a replication origin, assisted by the latency-associated nuclear antigen (LANA). Thus, TR seems to function as a cis element for the replication and partitioning of the KSHV genome. Viral replication and partitioning are also likely to require cellular factors that interact with TR in either a LANA-dependent or -independent manner. Here, we sought to identify factors that associate with TR by using a TR DNA column and found that poly(ADP-ribose) polymerase 1 (PARP1) and known replication factors, including ORC2, CDC6, and Mcm7, bound to TR. PARP1 bound directly to a specific region within TR independent of LANA, and LANA was poly(ADP-ribosyl)ated by PARP1. Drugs such as hydroxyurea and niacinamide, which raise or lower PARP activity, respectively, affected the virus copy number in infected cells. Thus, the poly(ADP-ribosyl)ation status of LANA appears to affect the replication and/or maintenance of the viral genome. Drugs that specifically up-regulate PARP activity may lead to the disappearance of latent KSHV.


2005 ◽  
Vol 79 (21) ◽  
pp. 13829-13836 ◽  
Author(s):  
Lai-Yee Wong ◽  
Angus C. Wilson

ABSTRACT During latency, the Kaposi's sarcoma-associated herpesvirus genome is maintained as a circular episome, replicating in synchrony with host chromosomes. Replication requires the latency-associated nuclear antigen (LANA) and an origin of latent DNA replication located in the viral terminal repeats, consisting of two LANA binding sites (LBSs) and a GC-rich sequence. Here, we show that the recruitment of a LANA dimer to high-affinity site LBS-1 bends DNA by 57° and towards the major groove. The cooccupancy of LBS-1 and lower-affinity LBS-2 induces a symmetrical bend of 110°. By changing the origin architecture, LANA may help to assemble a specific nucleoprotein structure important for the initiation of DNA replication.


2015 ◽  
Vol 89 (20) ◽  
pp. 10206-10218 ◽  
Author(s):  
Zhiguo Sun ◽  
Hem Chandra Jha ◽  
Erle S. Robertson

ABSTRACTLatent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requirestrans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells.IMPORTANCEDuring latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.


2007 ◽  
Vol 81 (15) ◽  
pp. 8225-8235 ◽  
Author(s):  
Hyun Jin Kwun ◽  
Suzane Ramos da Silva ◽  
Ishita M. Shah ◽  
Neil Blake ◽  
Patrick S. Moore ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses.


2001 ◽  
Vol 75 (3) ◽  
pp. 1378-1386 ◽  
Author(s):  
Jeffrey Vieira ◽  
Patricia O'Hearn ◽  
Louise Kimball ◽  
Bala Chandran ◽  
Lawrence Corey

ABSTRACT The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) andneo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.


2009 ◽  
Vol 83 (14) ◽  
pp. 7129-7141 ◽  
Author(s):  
Jie Lu ◽  
Subhash C. Verma ◽  
Masanao Murakami ◽  
Qiliang Cai ◽  
Pankaj Kumar ◽  
...  

ABSTRACT Survivin is a master regulator of cell proliferation and cell viability and is highly expressed in most human tumors. The molecular network linked to survivin expression in tumors has not been completely elucidated. In this study, we show that latency-associated nuclear antigen (LANA), a multifunctional protein of Kaposi's sarcoma-associated herpesvirus (KSHV) that is found in Kaposi's sarcoma tumors, upregulates survivin expression and increases the proliferation of KSHV-infected B cells. Analysis of pathway-specific gene arrays showed that survivin expression was highly upregulated in BJAB cells expressing LANA. The mRNA levels of survivin were also upregulated in HEK 293 and BJAB cells expressing LANA. Similarly, protein levels of survivin were significantly higher in LANA-expressing, as well as KSHV-infected, cells. Survivin promoter activity assays identified GC/Sp1 and p53 cis-acting elements within the core promoter region as being important for LANA activity. Gel mobility shift assays revealed that LANA forms a complex with Sp1 or Sp1-like proteins bound to the GC/Sp1 box of the survivin promoter. In addition, a LANA/p53 complex bound to the p53 cis-acting element within the survivin promoter, indicating that upregulation of survivin expression can also occur through suppression of p53 function. Furthermore, immunohistochemistry analyses revealed that survivin expression was upregulated in KSHV-associated Kaposi's sarcoma tissue, suggesting that LANA plays an important role in the upregulation of survivin expression in KSHV-infected endothelial cells. Knockdown of survivin expression by lentivirus-delivered small hairpin RNA resulted in loss of cell proliferation in KSHV-infected cells. Therefore, upregulation of survivin expression in KSHV-associated human cells contributes to their proliferation.


Sign in / Sign up

Export Citation Format

Share Document