scholarly journals PEGylation of a Vesicular Stomatitis Virus G Pseudotyped Lentivirus Vector Prevents Inactivation in Serum

2004 ◽  
Vol 78 (2) ◽  
pp. 912-921 ◽  
Author(s):  
Maria A. Croyle ◽  
Shellie M. Callahan ◽  
Alberto Auricchio ◽  
Gregg Schumer ◽  
Klause D. Linse ◽  
...  

ABSTRACT One disadvantage of vesicular stomatitis virus G (VSV-G) pseudotyped lentivirus vectors for clinical application is inactivation of the vector by human serum complement. To prevent this, monomethoxypoly(ethylene) glycol was conjugated to a VSV-G-human immunodeficiency virus vector expressing Escherichia coli beta-galactosidase. The modification did not affect transduction efficiency in vitro and protected the vector from inactivation in complement-active human and mouse sera. Blood from mice dosed intravenously with either the unmodified or the PEGylated virus particles was assayed for active vector by a limiting-dilution assay to evaluate transduction efficiency and for p24, an indicator of the total number of virus particles present. PEGylation extended the circulation half-life of active vector by a factor of 5 and reduced the rate of vector inactivation in the serum by a factor of 1,000. Pharmacokinetic profiles for the total number of virus particles present in the circulation were unaffected by PEGylation. Modification of the vector with poly(ethylene) glycol significantly enhanced transduction efficiency in the bone marrow and in the spleen 14 days after systemic administration of the virus. These results, in concert with the pharmacokinetic profiles, indicate that PEGylation does protect the virus from inactivation in the serum and, as a result, improves the transduction efficiency of VSV-G pseudotyped lentivirus vectors in susceptible organs in vivo.

2006 ◽  
Vol 13 ◽  
pp. S63
Author(s):  
Minna U. Kaikkonen ◽  
Jani K. Raty ◽  
Kari J. Airenne ◽  
Thomas Wirth ◽  
Tommi Heikura ◽  
...  

Gene Therapy ◽  
2005 ◽  
Vol 13 (4) ◽  
pp. 304-312 ◽  
Author(s):  
M U Kaikkonen ◽  
J K Räty ◽  
K J Airenne ◽  
T Wirth ◽  
T Heikura ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


Biomaterials ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.A. Deschamps ◽  
A.A. van Apeldoorn ◽  
H. Hayen ◽  
J.D. de Bruijn ◽  
U. Karst ◽  
...  

2007 ◽  
Vol 341 (1-2) ◽  
pp. 50-57 ◽  
Author(s):  
Hoo-Kyun Choi ◽  
Myung-Kwan Chun ◽  
Se Hee Lee ◽  
Mee Hee Jang ◽  
Hee Doo Kim ◽  
...  

1994 ◽  
Vol 5 (4) ◽  
pp. 283-286 ◽  
Author(s):  
Yoh Kodera ◽  
Taichi Sekine ◽  
Tohru Yasukohchi ◽  
Yoshihiro Kiriu ◽  
Misao Hiroto ◽  
...  

1999 ◽  
Vol 8 (3) ◽  
pp. 293-306 ◽  
Author(s):  
Gregory M. Cruise ◽  
Orion D. Hegre ◽  
Francis V. Lamberti ◽  
Steven R. Hager ◽  
Ron Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document