scholarly journals Protection of Rhesus Monkeys against Infection with Minimally Pathogenic Simian-Human Immunodeficiency Virus: Correlations with Neutralizing Antibodies and Cytotoxic T Cells

2005 ◽  
Vol 79 (6) ◽  
pp. 3358-3369 ◽  
Author(s):  
Gerald V. Quinnan ◽  
Xiao-Fang Yu ◽  
Mark G. Lewis ◽  
Peng Fei Zhang ◽  
Gerd Sutter ◽  
...  

ABSTRACT We studied the capacity of active immunization of rhesus monkeys with HIV-1 envelope protein (Env) to induce primary virus cross-reactive neutralizing antibodies to prevent infection following intravenous challenge with simian-human immunodeficiency virus (SHIV). Monkeys were immunized with the human immunodeficiency type 1 (HIV-1) strain R2 Env. Initially, the Env was expressed in vivo by an alphavirus replicon particle system, and then it was administered as soluble oligomeric gp140. Concurrently, groups of monkeys received expression vectors that encoded either simian immunodeficiency virus (SIV) gag/pol genes or no SIV genes in vivo to test the additional protective benefit of concurrent induction of virus-specific cell-mediated immune (CMI) responses. Groups of control monkeys received either the gag/pol regimen or sham immunizations. The antibodies induced by the Env immunization regimen neutralized diverse primary HIV-1 strains. Similarly, potent CMI responses were induced by the gag/pol regimen, as measured by gamma interferon enzyme-linked immunospot assays. Differences in the responses among groups of monkeys strongly suggested that there was interference between the Env and gag/pol immunization regimens. Complete protection of some of the monkeys against infection after intravenous challenge with the partially pathogenic SHIVDH12R (Clone 7) was associated independently with both neutralizing antibody and CMI responses. Protection was associated with SHIVDH12 (Clone 7) serum neutralizing antibody titers of ≥1:80 or with cellular immune responses corresponding to >2,000 spot forming cells per 106 peripheral blood mononuclear cells. Immunization was also associated with a reduction in the magnitude and duration of virus load. Induction of cross-reactive, primary HIV-1-neutralizing antibodies is feasible and, when potent, may result in complete protection against infection with a heterologous challenge virus strain.

2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


2007 ◽  
Vol 82 (2) ◽  
pp. 638-651 ◽  
Author(s):  
Yun Li ◽  
Bradley Cleveland ◽  
Igor Klots ◽  
Bruce Travis ◽  
Barbra A. Richardson ◽  
...  

ABSTRACT Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.


2003 ◽  
Vol 77 (5) ◽  
pp. 3119-3130 ◽  
Author(s):  
Ming Dong ◽  
Peng Fei Zhang ◽  
Franziska Grieder ◽  
James Lee ◽  
Govindaraj Krishnamurthy ◽  
...  

ABSTRACT We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160ΔCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160ΔCT was released by cells in the form of membrane-bound vesicles. gp160ΔCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.


2007 ◽  
Vol 81 (17) ◽  
pp. 9268-9278 ◽  
Author(s):  
Erin E. Verity ◽  
Dimitra Zotos ◽  
Kim Wilson ◽  
Catherine Chatfield ◽  
Victoria A. Lawson ◽  
...  

ABSTRACT The Sydney Blood Bank Cohort (SBBC) consists of eight blood transfusion recipients infected with nef-attenuated human immunodeficiency virus type 1 (HIV-1) acquired from a single donor. Here, we show that viral phenotypes and antibody responses differ considerably between individual cohort members, despite the single source of infection. Replication of isolated virus varied from barely detectable to similar to that of the wild-type virus, and virus isolated from five SBBC members showed coreceptor usage signatures unique to each individual. Higher viral loads and stronger neutralizing antibody responses were associated with better-replicating viral strains, and detectable viral replication was essential for the development of strong and sustained humoral immune responses. Despite the presence of strong neutralizing antibodies in a number of SBBC members, disease progression was not prevented, and each cohort member studied displayed a unique outcome of infection with nef-attenuated HIV-1.


2005 ◽  
Vol 79 (16) ◽  
pp. 10200-10209 ◽  
Author(s):  
Bo Peng ◽  
Liqun Rejean Wang ◽  
Victor Raúl Gómez-Román ◽  
Alberta Davis-Warren ◽  
David C. Montefiori ◽  
...  

ABSTRACT A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MN env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIVSF162 gp140ΔV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1MN env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1SF162 gp140ΔV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.


2009 ◽  
Vol 83 (18) ◽  
pp. 9577-9583 ◽  
Author(s):  
Kurt Vermeire ◽  
Kristel Van Laethem ◽  
Wouter Janssens ◽  
Thomas W. Bell ◽  
Dominique Schols

ABSTRACT Continuous specific downmodulation of CD4 receptor expression in T lymphocytes by the small molecule cyclotriazadisulfonamide (CADA) selected for the CADA-resistant human immunodeficiency virus type 1 (HIV-1) NL4.3 virus containing unique mutations in the C4 and V5 regions of gp120, likely stabilizing the CD4-binding conformation. The amino acid changes in Env were associated with decreased susceptibility to anti-CD4 monoclonal antibody treatment of the cells and with higher susceptibility of the virus to soluble CD4. In addition, the acquired ability of a CADA-resistant virus to infect cells with low CD4 expression was associated with an increased susceptibility of the virus to neutralizing antibodies from sera of several HIV-1-infected patients.


2008 ◽  
Vol 82 (24) ◽  
pp. 12094-12103 ◽  
Author(s):  
Catherine A. Blish ◽  
Ozge C. Dogan ◽  
Nina R. Derby ◽  
Minh-An Nguyen ◽  
Bhavna Chohan ◽  
...  

ABSTRACT Superinfection by a second human immunodeficiency virus type 1 (HIV-1) strain indicates that gaps in protective immunity occur during natural infection. To define the role of HIV-1-specific neutralizing antibodies (NAbs) in this setting, we examined NAb responses in 6 women who became superinfected between ∼1 to 5 years following initial infection compared to 18 women with similar risk factors who did not. Although superinfected individuals had less NAb breadth than matched controls at ∼1 year postinfection, no significant differences in the breadth or potency of NAb responses were observed just prior to the second infection. In fact, four of the six subjects had relatively broad and potent NAb responses prior to infection by the second strain. To more specifically examine the specificity of the NAbs against the superinfecting virus, these variants were cloned from five of the six individuals. The superinfecting variants did not appear to be inherently neutralization resistant, as measured against a pool of plasma from unrelated HIV-infected individuals. Moreover, the superinfected individuals were able to mount autologous NAb responses to these variants following reinfection. In addition, most superinfected individuals had NAbs that could neutralize their second viral strains prior to their reinfection, suggesting that the level of NAbs elicited during natural infection was not sufficient to block infection. These data indicate that preventing infection by vaccination will likely require broader and more potent NAb responses than those found in HIV-1-infected individuals.


2001 ◽  
Vol 75 (3) ◽  
pp. 1165-1171 ◽  
Author(s):  
Xinzhen Yang ◽  
Richard Wyatt ◽  
Joseph Sodroski

ABSTRACT Human immunodeficiency virus (HIV-1) envelope glycoprotein subunits, such as the gp120 exterior glycoprotein, typically elicit antibodies that neutralize T-cell-line-adapted (TCLA), but not primary, clinical isolates of HIV-1. Here we compare the immunogenicity of gp120 and soluble stabilized trimers, which were designed to resemble the functional envelope glycoprotein oligomers of primary and TCLA HIV-1 strains. For both primary and TCLA virus proteins, soluble stabilized trimers generated neutralizing antibody responses more efficiently than gp120 did. Trimers derived from a primary isolate elicited antibodies that neutralized primary and TCLA HIV-1 strains. By contrast, trimers derived from a TCLA isolate generated antibodies that neutralized only the homologous TCLA virus. Thus, soluble stabilized envelope glycoprotein trimers derived from primary HIV-1 isolates represent defined immunogens capable of eliciting neutralizing antibodies that are active against clinically relevant HIV-1 strains.


1998 ◽  
Vol 72 (12) ◽  
pp. 10275-10280 ◽  
Author(s):  
Marjorie Robert-Guroff ◽  
Harvinder Kaur ◽  
L. Jean Patterson ◽  
Michel Leno ◽  
Anthony J. Conley ◽  
...  

ABSTRACT Vaccine-induced protection of chimpanzees against laboratory-adapted and syncytium-inducing, multiply passaged primary human immunodeficiency virus type 1 (HIV-1) isolates, but not against non-syncytium-inducing, minimally passaged ones, has been demonstrated. Following challenge with such an isolate, HIV-15016, we obtained complete protection in one of three chimpanzees previously protected against low- and high-dose HIV-1SF2 exposures after immunization with an adenovirus-HIV-1MN gp160 priming–HIV-1SF2gp120 boosting regimen. At challenge, the protected chimpanzee exhibited broad humoral immunity, including neutralizing antibody activity. These results demonstrate the potential of this combination vaccine strategy and suggest that vaccine protection against an HIV isolate relevant to infection of people is feasible.


2004 ◽  
Vol 78 (24) ◽  
pp. 13455-13459 ◽  
Author(s):  
Philip M. McKenna ◽  
Pyone Pyone Aye ◽  
Bernhard Dietzschold ◽  
David C. Montefiori ◽  
Louis N. Martin ◽  
...  

ABSTRACT Rabies virus (RV) has recently been developed as a novel vaccine candidate for human immunodeficiency virus type 1 (HIV-1). The RV glycoprotein (G) can be functionally replaced by HIV-1 envelope glycoprotein (Env) if the gp160 cytoplasmic domain (CD) of HIV-1 Env is replaced by that of RV G. Here, we describe a pilot study of the in vivo replication and immunogenicity of an RV with a deletion of G (ΔG) expressing a simian/human immunodeficiency virus SHIV89.6P Env ectodomain and transmembrane domain fused to the RV G CD (ΔG-89.6P-RVG) in a rhesus macaque. An animal vaccinated with ΔG-89.6P-RVG developed SHIV89.6P virus-neutralizing antibodies and SHIV89.6P-specific cellular immune responses after challenge with SHIV89.6P. There was no evidence of CD4+ T-cell loss, and plasma viremia was controlled to undetectable levels by 6 weeks postchallenge and has remained suppressed out to 22 weeks postchallenge.


Sign in / Sign up

Export Citation Format

Share Document