Transcription factor Sp1 is important for retinoic acid-induced expression of the tissue plasminogen activator gene during F9 teratocarcinoma cell differentiation

1990 ◽  
Vol 10 (11) ◽  
pp. 5883-5893
Author(s):  
A L Darrow ◽  
R J Rickles ◽  
L T Pecorino ◽  
S Strickland

The induced differentiation of F9 cells by retinoic acid (RA) and cyclic AMP (cAMP) activated transcription of the tissue plasminogen activator (t-PA) gene. This differentiation-responsive regulation of the t-PA promoter was also observed in transient assays. Multiple sequence elements within 243 bp of t-PA DNA contributed to the high level of transcription in retinoic acid- and cyclic AMP-differentiated cells. To investigate the factors involved in controlling t-PA transcription upon differentiation, we used F9 cell extracts to examine proteins that bind two proximal promoter elements. These elements (boxes 4 and 5) are homologous to GC boxes that are known binding sites for transcription factor Sp1. Mobility shift assays in the presence and absence of anti-Sp1 antibodies demonstrated that the proteins which bound to this region were immunologically related to human Sp1. The proteins also had a DNA-binding specificity similar to that of a truncated form of Sp1. Mutations of the GC motif within boxes 4 and 5 that interfered with Sp1 binding reduced in parallel the binding of the F9 cellular factors and lowered transcription in vitro as well as in vivo. Although this proximal region of the t-PA promoter was active in vivo only in differentiated cells, the Sp1-like binding proteins were present in equal concentrations and had similar properties in extracts of both stem and differentiated cells. These data suggest that other cellular elements participate with this Sp1-like factor in controlling differentiation-specific expression.

1990 ◽  
Vol 10 (11) ◽  
pp. 5883-5893 ◽  
Author(s):  
A L Darrow ◽  
R J Rickles ◽  
L T Pecorino ◽  
S Strickland

The induced differentiation of F9 cells by retinoic acid (RA) and cyclic AMP (cAMP) activated transcription of the tissue plasminogen activator (t-PA) gene. This differentiation-responsive regulation of the t-PA promoter was also observed in transient assays. Multiple sequence elements within 243 bp of t-PA DNA contributed to the high level of transcription in retinoic acid- and cyclic AMP-differentiated cells. To investigate the factors involved in controlling t-PA transcription upon differentiation, we used F9 cell extracts to examine proteins that bind two proximal promoter elements. These elements (boxes 4 and 5) are homologous to GC boxes that are known binding sites for transcription factor Sp1. Mobility shift assays in the presence and absence of anti-Sp1 antibodies demonstrated that the proteins which bound to this region were immunologically related to human Sp1. The proteins also had a DNA-binding specificity similar to that of a truncated form of Sp1. Mutations of the GC motif within boxes 4 and 5 that interfered with Sp1 binding reduced in parallel the binding of the F9 cellular factors and lowered transcription in vitro as well as in vivo. Although this proximal region of the t-PA promoter was active in vivo only in differentiated cells, the Sp1-like binding proteins were present in equal concentrations and had similar properties in extracts of both stem and differentiated cells. These data suggest that other cellular elements participate with this Sp1-like factor in controlling differentiation-specific expression.


1989 ◽  
Vol 9 (4) ◽  
pp. 1691-1704 ◽  
Author(s):  
R J Rickles ◽  
A L Darrow ◽  
S Strickland

F9 cells induced to differentiate with retinoic acid (RA) increase transcription of the tissue plasminogen activator (t-PA) gene. Further treatment of these cells with cyclic AMP (cAMP) results in an additional stimulation of t-PA gene transcription. To investigate the mechanism of this two-stage regulation, 4 kilobase pairs (kbp) of 5'-flanking sequence from the murine t-PA gene was isolated. Two major start sites for transcription were found, neither of which depended on a classical TATA motif for correct initiation. By using transient transfection assays, it was determined that 4-kbp of flanking sequence could confer on reporter genes the same two-stage differentiation-specific expression as was observed for the endogenous t-PA gene. Deletion analyses of this 4-kbp fragment showed that 190 bp of flanking sequence was sufficient to bestow the same degree of two-stage regulation on reporter gene constructs. Within this region of DNA, sequence analysis revealed a possible cAMP regulatory element, a CTF/NF-1 recognition sequence, two potential Sp1 sites, and five potential binding sites for transcription factor AP-2. The deletion experiments, coupled with the positions of these potential cis-acting elements, suggest that multiple transcription factors, including those that bind to cAMP regulatory element, CTF/NF-1, Sp1, and AP-2 sites, may be involved in regulation of the t-PA gene during F9 cell differentiation.


1989 ◽  
Vol 9 (4) ◽  
pp. 1691-1704
Author(s):  
R J Rickles ◽  
A L Darrow ◽  
S Strickland

F9 cells induced to differentiate with retinoic acid (RA) increase transcription of the tissue plasminogen activator (t-PA) gene. Further treatment of these cells with cyclic AMP (cAMP) results in an additional stimulation of t-PA gene transcription. To investigate the mechanism of this two-stage regulation, 4 kilobase pairs (kbp) of 5'-flanking sequence from the murine t-PA gene was isolated. Two major start sites for transcription were found, neither of which depended on a classical TATA motif for correct initiation. By using transient transfection assays, it was determined that 4-kbp of flanking sequence could confer on reporter genes the same two-stage differentiation-specific expression as was observed for the endogenous t-PA gene. Deletion analyses of this 4-kbp fragment showed that 190 bp of flanking sequence was sufficient to bestow the same degree of two-stage regulation on reporter gene constructs. Within this region of DNA, sequence analysis revealed a possible cAMP regulatory element, a CTF/NF-1 recognition sequence, two potential Sp1 sites, and five potential binding sites for transcription factor AP-2. The deletion experiments, coupled with the positions of these potential cis-acting elements, suggest that multiple transcription factors, including those that bind to cAMP regulatory element, CTF/NF-1, Sp1, and AP-2 sites, may be involved in regulation of the t-PA gene during F9 cell differentiation.


2003 ◽  
Vol 30 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Michiel J. B. Kemme ◽  
Rik C. Schoemaker ◽  
Jacobus Burggraaf ◽  
Monique van der Linden ◽  
Marina Noordzij ◽  
...  

2019 ◽  
Vol 308 ◽  
pp. 162-171 ◽  
Author(s):  
Clara Correa-Paz ◽  
María F. Navarro Poupard ◽  
Ester Polo ◽  
Manuel Rodríguez-Pérez ◽  
Pablo Taboada ◽  
...  

1992 ◽  
Vol 1 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Toshiaki Iba ◽  
Bauer E. Sumpio

The effects of cyclic strain on the production of tissue plasminogen activator (tPA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured endothelial cells (EC) were examined. Human saphenous vein EC were seeded in selective areas of culture plates with flexible membrane bottoms (corresponding to specific strain regions) and grown to confluence. Membranes were deformed by vacuum (-20 kPa) at 60 cycles/min (0.5 s strain alternating with 0.5 s relaxation in the neutral position) for 5 days. EC grown in the periphery were subjected to 7-24% strain, while cells grown in the center experienced less than 7% strain. The results show a significant increase in immunoreactive tPA production on days 1, 3 and 5 compared to day 0 in EC subjected to more than 7% cyclic strain. There was no significant elevation of tPA in the medium of EC subjected to less than 7% strain. tPA activity could only be detected in the medium of EC subjected to more than 7% cyclic strain. PAI-1 levels in the medium were not significantly different in either group. In addition, immunocytochemical detection of intracellular tPA and messenger ribonucleic acid (mRNA) expression of tPA (assessed by the reverse transcriptase polymerase chain reaction utilizing tPA specific sense and antisense primers) was significantly increased in EC subjected to more than 7% cyclic strain. We conclude that a 60 cycles/min regimen of strain that is greater than 7% can selectively stimulate tPA production by EC in vitro and may contribute to the relative nonthrombogenicity of the endothelium in vivo.


1995 ◽  
Vol 22 (5) ◽  
pp. 573-579 ◽  
Author(s):  
Andrew D.R. Northeast ◽  
Kenneth S. Soo ◽  
Linda G. Bobrow ◽  
Patrick J. Gaffney ◽  
Kevin G. Burnand

1993 ◽  
Vol 7 (1) ◽  
pp. 15-22 ◽  
Author(s):  
E.S. Cole ◽  
E.H. Nichols ◽  
L. Poisson ◽  
M.L. Harnois ◽  
D.J. Livingston

Sign in / Sign up

Export Citation Format

Share Document