scholarly journals In silico and in vivo analyses of the mutated human tissue plasminogen activator (mtPA) and the antithetical effects of P19 silencing suppressor on its expression in two Nicotiana species

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mahshid Amiri ◽  
Mokhtar Jalali-Javaran ◽  
Raheem Haddad ◽  
Parastoo Ehsani
2010 ◽  
Vol 76 (21) ◽  
pp. 7226-7230 ◽  
Author(s):  
Yanping Geng ◽  
Shengjun Wang ◽  
Qingsheng Qi

ABSTRACT Recombinant human tissue plasminogen activator (rPA) is a truncated version of tissue plasminogen activator (tPA), which contains nine disulfide bonds and is prone to forming inactive inclusion bodies when expressed in bacteria. To obtain functional rPA expression, we displayed the rPA on the surface of polyhydroxybutyrate (PHB) granules using phasin as the affinity tag. rPA was fused to the N terminus of the phasin protein with a thrombin cleavage site as the linker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis showed that rPA fusion was successfully displayed on the surface of PHB granules. An activity assay indicated that the rPA fusion is active. The in vivo surface display strategy for functional rPA expression in Escherichia coli is distinct for its efficient folding and easier purification and may be expanded to the expression of other eukaryotic proteins with complex conformation.


1987 ◽  
Vol 5 (9) ◽  
pp. 953-958 ◽  
Author(s):  
David Lau ◽  
Gregory Kuzma ◽  
Cha-Mer Wei ◽  
David J. Livingston ◽  
Nancy Hsiung

2003 ◽  
Vol 30 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Michiel J. B. Kemme ◽  
Rik C. Schoemaker ◽  
Jacobus Burggraaf ◽  
Monique van der Linden ◽  
Marina Noordzij ◽  
...  

1990 ◽  
Vol 10 (11) ◽  
pp. 5883-5893
Author(s):  
A L Darrow ◽  
R J Rickles ◽  
L T Pecorino ◽  
S Strickland

The induced differentiation of F9 cells by retinoic acid (RA) and cyclic AMP (cAMP) activated transcription of the tissue plasminogen activator (t-PA) gene. This differentiation-responsive regulation of the t-PA promoter was also observed in transient assays. Multiple sequence elements within 243 bp of t-PA DNA contributed to the high level of transcription in retinoic acid- and cyclic AMP-differentiated cells. To investigate the factors involved in controlling t-PA transcription upon differentiation, we used F9 cell extracts to examine proteins that bind two proximal promoter elements. These elements (boxes 4 and 5) are homologous to GC boxes that are known binding sites for transcription factor Sp1. Mobility shift assays in the presence and absence of anti-Sp1 antibodies demonstrated that the proteins which bound to this region were immunologically related to human Sp1. The proteins also had a DNA-binding specificity similar to that of a truncated form of Sp1. Mutations of the GC motif within boxes 4 and 5 that interfered with Sp1 binding reduced in parallel the binding of the F9 cellular factors and lowered transcription in vitro as well as in vivo. Although this proximal region of the t-PA promoter was active in vivo only in differentiated cells, the Sp1-like binding proteins were present in equal concentrations and had similar properties in extracts of both stem and differentiated cells. These data suggest that other cellular elements participate with this Sp1-like factor in controlling differentiation-specific expression.


Sign in / Sign up

Export Citation Format

Share Document