scholarly journals Roles of fetal G gamma-globin promoter elements and the adult beta-globin 3' enhancer in the stage-specific expression of globin genes.

1990 ◽  
Vol 10 (3) ◽  
pp. 1116-1125 ◽  
Author(s):  
C Perez-Stable ◽  
F Costantini

The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin 3' enhancer is potentially active at the embryonic stage and thus cannot be solely responsible for the fetal or adult specificity of the beta-globin gene.

1990 ◽  
Vol 10 (3) ◽  
pp. 1116-1125
Author(s):  
C Perez-Stable ◽  
F Costantini

The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin 3' enhancer is potentially active at the embryonic stage and thus cannot be solely responsible for the fetal or adult specificity of the beta-globin gene.


1987 ◽  
Vol 7 (11) ◽  
pp. 4024-4029
Author(s):  
M Trudel ◽  
J Magram ◽  
L Bruckner ◽  
F Costantini

The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.


1992 ◽  
Vol 12 (4) ◽  
pp. 1561-1567 ◽  
Author(s):  
J A Lloyd ◽  
J M Krakowsky ◽  
S C Crable ◽  
J B Lingrel

The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.


1992 ◽  
Vol 12 (4) ◽  
pp. 1561-1567
Author(s):  
J A Lloyd ◽  
J M Krakowsky ◽  
S C Crable ◽  
J B Lingrel

The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2341-2341
Author(s):  
Dorothy Tuan

Abstract In the human beta-globin gene locus, an LTR retrotransposon derived from ERV-9 human endogenous retrovirus is located near the locus control region (LCR) far upstream of the globin genes. In transgenic mice carrying the 100 kb human globin gene locus, deleting the ERV-9 LTR by cre-loxP mediated in situ recombination inactivates transcription of beta-globin gene by ~50% and activates that of gamma-globin gene by up to 5 fold, to at least 20% the level of beta-globin mRNA in both fetal and adult erythroid cells. Chromosome-conformation-capture (3C) shows that the ERV-9 LTR preferentially loops with beta-globin gene, even in fetal erythroid cells where gamma-globin gene is predominantly transcribed. Unique in the locus, the ERV-9 LTR contains high density of CCAAT motifs that strongly bind transcription factor (TF) NF-Y critical for assembling the LTR enhancer complex but no CCNCNCCC motifs that bind master erythroid TF KLF1, while the beta-globin promoter contains two tandem CCNCNCCC motifs that bind KLF1 but a CCAAT motif that only weakly bind NF-Y. However, both the LTR and beta-globin promoter associate in vivo with high levels of NF-Y and KLF1 in ChIP assays. Protein immunoprecipitation shows that neither NF-Y nor KLF1 associates with transcription co-regulator Ldb1, which has been reported to mediate chromosome looping of the LCR with the globin genes. Thus, the Ldb1/LMO2/GATA -1, -2 complex potentially assembled by the GATA motifs distributed throughout the locus does not appear to mediate the preferential looping of ERV-9 LTR with beta-globin promoter. Through interaction of NF-Y and KLF1 mediated by the to be identified co-regulator, the ERV-9 LTR interacts with and activates beta-globin gene, and suppresses gamma-globin gene by a competitive mechanism. Deletion of the ERV-9 LTR removes the competitive advantage of beta-globin gene, thus re-activating gamma-globin gene. Our findings suggest that deleting the ERV-9 LTR from the globin locus by genome-editing could provide a potential new therapy for beta-hemoglobinopathies. Disclosures No relevant conflicts of interest to declare.


1987 ◽  
Vol 7 (11) ◽  
pp. 4024-4029 ◽  
Author(s):  
M Trudel ◽  
J Magram ◽  
L Bruckner ◽  
F Costantini

The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


1996 ◽  
Vol 16 (6) ◽  
pp. 2906-2912 ◽  
Author(s):  
B A Hug ◽  
R L Wesselschmidt ◽  
S Fiering ◽  
M A Bender ◽  
E Epner ◽  
...  

To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1771-1776 ◽  
Author(s):  
S Shiokawa ◽  
H Yamada ◽  
Y Takihara ◽  
E Matsunaga ◽  
Y Ohba ◽  
...  

Abstract A DNA fragment containing the deletion junction region from a Japanese individual with homozygous delta beta-thalassemia has been cloned. A clone containing the normal DNA surrounding the 3′ breakpoint of this deletion and a clone carrying the G gamma- and A gamma-globin genes of this patient were also isolated. Sequences of the deletion junction and both gamma-globin genes were determined. A comparison of these sequences with previously determined sequences of the normal counterparts revealed that the 5′ breakpoint is located between 2,134 and 2,137 base pairs (bp) 3′ to the polyA site of the A gamma-globin gene, the 5′ breakpoint is located just downstream of the 3′ border of the fetal gamma-globin duplication unit, and no molecular defects are evident within the gamma-globin gene region. A comparison between the sequences of the normal DNA surrounding the 3′ breakpoint and the normal DNA surrounding the 5′ breakpoint shows that deletion is the result of a nonhomologous recombination event. There are A+T-rich stretches near the 5′ and 3′ breakpoints in the normal DNA, and a portion of an Aly repeat is located in the region 3′ to the 3′ breakpoint. Southern blot analysis using probes 3′ to the beta-globin gene showed that the deletion extends in the 3′ direction further than any other deletions associated with delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) heretofore reported. These results are discussed in terms of the mechanism generating large deletions in mammalian cells and three models for the regulation of gamma-globin and beta-globin gene expression in humans.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 457-462 ◽  
Author(s):  
AE Kulozik ◽  
N Yarwood ◽  
RW Jones

Abstract The Corfu delta beta zero thalassemia is characterized by the clinical picture of thalassemia intermedia. In the homozygous state there is a complete absence of hemoglobin (Hb) A and Hb A2 and a high level of Hb F. A DNA fragment containing the gamma and beta globin genes has been cosmid cloned, and the deletion breakpoint region, the beta globin gene and the promoter regions of the gamma globin genes sequenced. The deletion removes 7,201 base pairs (bp) containing part of the delta globin gene and sequences upstream. The beta globin gene contains a G--- -A mutation at IVS 1 position 5. The gamma globin gene promoters are normal. Analysis of the transcription of the mutated beta globin gene in transfected HeLa cells shows that normal message is produced at a level of approximately 20% compared with a normal gene, the remaining 80% being spliced at cryptic sites in exon 1 and intron 1. This indicates that the mutation in the beta globin gene is not the sole cause of the absence of Hb A in Corfu delta beta zero thalassemia. It is concluded that the 7.2 kilobase (kb) of deleted DNA contains sequences necessary for the normal activation of the beta globin gene. Possible mechanisms for the effect of the deletion on the expression of beta and gamma globin genes are discussed.


Sign in / Sign up

Export Citation Format

Share Document