targeted deletion
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 114)

H-INDEX

95
(FIVE YEARS 8)

Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Xingdan Liu ◽  
Qi Ding ◽  
Wenshu Wang ◽  
Yanling Pan ◽  
Chao Tan ◽  
...  

Abstract Background The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5′splicing site of its 1st intron greatly affects this intron’s splicing efficiency and defines two predominant Wx alleles, Wxa and Wxb. Wxa rice often harbours intermediate to high amylose contents, whereas Wxb rice exhibits low to intermediate amylose contents. By deleting the Wx 1st intron using CRISPR/Cas9 technology, we generate a completely novel Wx allele and further investigate how intron removal affects Wx gene expression and rice grain amylose content. Results CRISPR/Cas9-mediated targeted deletion of the Wx 1st intron was performed on 4 rice inbred lines: KY131 (Wxb), X32 (Wxb), X35 (Wxa) and X55 (Wxlv). Deletion of the 1st intron occurred in 8.6–11.8% of the primary transformants of these 4 inbred lines. Compared to wild-type plants, amylose content was significantly increased from 13.0% to approximately 24.0% in KY131 and X32 mutant lines, which both carried the Wxb allele. However, no significant difference in amylose content was observed between wild-type plants and X35 and X55 mutant lines, which carried the Wxa and Wxlv alleles, respectively. Wx gene expression analysis of wild-type plants and mutants yielded results that were highly consistent with amylose content results. KY131 and X32 mutants accumulated increased levels of steady mRNA transcripts compared with wild-type plants, whereas steady mRNA levels were not altered in X35 and X55 mutants compared with wild-type plants. Grain quality, including appearance quality and eating and cooking quality, which are tightly associated with amylose content, was also assessed in wild-type and mutant plants, and data were presented and analysed. Conclusions This study presents a novel and rapid strategy to increase amylose content in inbred rice carrying a Wxb allele. Our data strongly suggest that the 1st intron of the Wx gene regulates Wx gene expression mainly at the post-transcriptional level in rice. This finding is in contrast to a previous hypothesis suggesting that it influences Wx gene transcription. In addition, removal of the first intron generates a completely novel Wx allele. Further studies on this new Wx allele will provide invaluable insights into the regulation of Wx gene expression, which will help researchers engineer new Wx alleles to facilitate the breeding of rice cultivars with better eating and cooking quality.


2022 ◽  
Vol 15 (1) ◽  
pp. 57
Author(s):  
Katalin Szabó ◽  
Ágnes Kemény ◽  
Noémi Balázs ◽  
Esam Khanfar ◽  
Zoltán Sándor ◽  
...  

Transient Receptor Potential Ankyrin 1 (TRPA1) has been reported to influence neuroinflammation and lymphocyte function. We analysed the immune phenotype and activation characteristics of TRPA1-deficient mice (knockout—KO) generated by targeted deletion of the pore-loop domain of the ion channel. We compared TRPA1 mRNA and protein expression in monocyte and lymphocyte subpopulations isolated from primary and secondary lymphatic organs of wild type (WT) and KO mice. qRT-PCR and flow cytometric studies indicated a higher level of TRPA1 in monocytes than in lymphocytes, but both were orders of magnitude lower than in sensory neurons. We found lower CD4+/CD8+ thymocyte ratios, diminished CD4/CD8 rates, and B cell numbers in the KO mice. Early activation marker CD69 was lower in CD4+ T cells of KO, while the level of CD8+/CD25+ cells was higher. In vitro TcR-mediated activation did not result in significant differences in CD69 level between WT and KO splenocytes, but lower cytokine (IL-1β, IL-6, TNF-α, IL-17A, IL-22, and RANTES) secretion was observed in KO splenocytes. Basal intracellular Ca2+ level and TcR-induced Ca2+ signal in T lymphocytes did not differ significantly, but interestingly, imiquimod-induced Ca2+ level in KO thymocytes was higher. Our results support the role of TRPA1 in the regulation of activation, cytokine production, and T and B lymphocytes composition in mice.


2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Mengkai Zhou ◽  
Ze Li ◽  
Yanjie Liu ◽  
Ping Zhang ◽  
Xiaoran Hao ◽  
...  

Melanins are the common fungal pigment, which contribute to stress resistance and pathogenesis. However, few studies have explored the regulation mechanism of its synthesis in filamentous fungi. In this study, we identified two transcription factors, Pmr1 and Pmr2, in the filamentous fungus Pestalotiopsis microspora. Computational and phylogenetic analyses revealed that Pmr1 and Pmr2 were located in the gene cluster for melanin biosynthesis. The targeted deletion mutant strain Δpmr1 displayed defects in biosynthesis of conidia pigment and morphological integrity. The deletion of pmr2 resulted in reduced conidia pigment, but the mycelial morphology had little change. Moreover, Δpmr2 produced decreased conidia. RT-qPCR data revealed that expression levels of genes in the melanin biosynthesis gene cluster were downregulated from the loss of Pmr1 and Pmr2. Interestingly, the yield of secondary metabolites in the mutant strains Δpmr1 and Δpmr2 increased, comparing with the wild type, and additionally, Pmr1 played a larger regulatory role in secondary metabolism. Taken together, our results revealed the crucial roles of the transcription factors Pmr1 and Pmr2 in melanin synthesis, asexual development and secondary metabolism in the filamentous fungus P. microspora.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Liu ◽  
Shanyue Zhou ◽  
Baohua Li ◽  
Weichao Ren

Gray mold caused by Botrytis cinerea is a devastating disease that leads to huge economic losses worldwide. Autophagy is an evolutionarily conserved process that maintains intracellular homeostasis through self-eating. In this study, we identified and characterized the biological function of the autophagy-related protein Atg6 in B. cinerea. Targeted deletion of the BcATG6 gene showed block of autophagy and several phenotypic defects in aspects of mycelial growth, conidiation, sclerotial formation and virulence. All of the phenotypic defects were restored by targeted gene complementation. Taken together, these results suggest that BcAtg6 plays important roles in the regulation of various cellular processes in B. cinerea.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3461
Author(s):  
Sujit K. Mohanty ◽  
Bryan Donnelly ◽  
Haley Temple ◽  
Alexander Bondoc ◽  
Monica McNeal ◽  
...  

Biliary atresia (BA) is an obstructive neonatal cholangiopathy leading to liver cirrhosis and end stage liver disease. A Kasai portoenterostomy may restore biliary drainage, but most patients ultimately require liver transplantation for survival. At diagnosis, immune cells within the liver of patients with BA demonstrate a T-helper 1 (Th1) inflammatory profile similar to rhesus rotavirus (RRV)-infected mice livers developing BA. The transcription factor Tbx21 (T-bet) is essential for induction of a Th1 immune response in both the adaptive and innate immune system. Here we used animals with targeted deletion of the T-bet gene to determine its role in the progression of BA. Infection of newborn T-bet knockout (KO) pups with RRV resulted in a decreased Th1 inflammatory chemokine/cytokine profile when compared to infected wild-type mice. Analysis of the mononuclear cells profile from T-bet KO mice revealed both a significant decrease in the total number of CD3, CD4, and CD8 T cells and their effector molecules granzyme A, perforin, and FasL. Even though the percentage of T-bet KO mice displaying symptoms of an obstructive cholangiopathy and overall mortality rate was not different compared to wild-type mice, the extrahepatic bile ducts of T-bet KO mice remained patent.


2021 ◽  
Vol 160 ◽  
pp. 105524
Author(s):  
Christina Van ◽  
Michael C. Condro ◽  
Henly H. Ko ◽  
Anh Q. Hoang ◽  
Ruoyan Zhu ◽  
...  

2021 ◽  
Author(s):  
Renee M van der Sluis ◽  
Lamin B Cham ◽  
Alberg Gris Oliver ◽  
Kristine Raaby Gammelgaard ◽  
Jesper Geert Pedersen ◽  
...  

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here we show that in COVID-19 patients, circulating plasmacytoid dendritic cells (pDCs) decline early after symptom onset and this correlated with COVID-19 disease severity. This transient depletion coincides with decreased expression of antiviral type I IFNα and the systemic inflammatory cytokines CXCL10 and IL-6. Importantly, COVID-19 disease severity correlated with decreased pDC frequency in peripheral blood. Using an in vitro stem cell-based human pDC model, we demonstrate that pDCs directly sense SARS-CoV-2 and in response produce multiple antiviral (IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines. This immune response is sufficient to protect epithelial cells from de novo SARS-CoV-2 infection. Targeted deletion of specific sensing pathways identified TLR7-MyD88 signaling as being crucial for production of the antiviral IFNs, whereas TLR2 is responsible for the inflammatory IL-6 response. Surprisingly, we found that SARS-CoV-2 engages the neuropilin-1 receptor on pDCs to mitigate the antiviral IFNs but not the IL-6 response. These results demonstrate distinct sensing pathways used by pDCs to elicit antiviral vs. immunopathological responses to SARS-CoV-2 and suggest that targeting neuropilin-1 on pDCs may be clinically relevant for mounting TLR7-mediated antiviral protection.


Author(s):  
Anita Hermann ◽  
Dave Kosman ◽  
William McGinnis ◽  
Ella Tour

Abstract Long non-coding RNAs (lncRNAs) have been implicated in a variety of processes in development, differentiation, and disease. In Drosophila melanogaster, the bithorax Hox cluster (BX-C) contains three Hox genes (Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B)), along with a number of lncRNAs, most with unknown functions. Here, we investigated the function of a long non-coding RNA, lncRNA: PS4 that originates in the second intron of Ubx and is transcribed in the antisense orientation to Ubx. The expression pattern of lncRNA: PS4 is complementary to Ubx in the thoracic primordia, and the lncRNA: PS4 coding region overlaps the location of the large insertion that causes the dominant homeotic mutation Contrabithorax-1 (UbxCbx-1), which partially transforms Drosophila wings into halteres via ectopic activation of Ubx. This led us to investigate the potential role of this lncRNA in regulation of Ubx expression. The UbxCbx-1 mutation dramatically changes the pattern of lncRNA: PS4, eliminating the expression of most lncRNA: PS4 sequences from parasegment 4 (where Ubx protein is normally absent) and ectopically activating lncRNA: PS4 at high levels in the abdomen (where Ubx is normally expressed). These changes, however, did not lead to changes in the Ubx embryonic transcription pattern. Targeted deletion of the two promoters of lncRNA: PS4 did not result in the change of Ubx expression in the embryos. In the genetic background of a UbxCbx-1 mutation, the lncRNA: PS4 mutation does slightly enhance the ectopic activation of Ubx protein expression in wing discs and also slightly enhances the wing phenotype seen in UbxCbx-1 heterozygotes.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1681
Author(s):  
María Rodríguez-Muñoz ◽  
Elsa Cortés-Montero ◽  
Yara Onetti ◽  
Pilar Sánchez-Blázquez ◽  
Javier Garzón-Niño

Nerve injury produces neuropathic pain through the binding of α2δ1 proteins to glutamate N-methyl-D-aspartate receptors (NMDARs). Notably, mice with a targeted deletion of the sigma 1 receptor (σ1R) gene do not develop neuropathy, whereas mice lacking the histidine triad nucleotide-binding protein 1 (Hint1) gene exhibit exacerbated allodynia. σ1R antagonists more effectively diminish neuropathic pain of spinal origin when administered by intracerebroventricular injection than systemically. Thus, in mice subjected to unilateral sciatic nerve chronic constriction injury (CCI), we studied the participation of σ1Rs and HINT1 proteins in the formation of α2δ1-NMDAR complexes within the supraspinal periaqueductal gray (PAG). We found that δ1 peptides required σ1Rs in order to interact with the NMDAR NR1 variant that contains the cytosolic C1 segment. σ1R antagonists or low calcium levels provoke the dissociation of σ1R-NR1 C1 dimers, while they barely affect the integrity of δ1-σ1R-NR1 C1 trimers. However, HINT1 does remove δ1 peptides from the trimer, thereby facilitating the subsequent dissociation of σ1Rs from NMDARs. In σ1R-/- mice, CCI does not promote the formation of NMDAR-α2δ1 complexes and allodynia does not develop. The levels of α2δ1-σ1R-NMDAR complexes increase in HINT1-/- mice and after inducing CCI, degradation of α2δ1 proteins is observed. Notably, σ1R antagonists but not gabapentinoids alleviate neuropathic pain in these mice. During severe neuropathy, the metabolism of α2δ1 proteins may account for the failure of many patients to respond to gabapentinoids. Therefore, σ1Rs promote and HINT1 proteins hinder the formation α2δ1-NMDAR complexes in the PAG, and hence, the appearance of mechanical allodynia depends on the interplay between these proteins.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1143-1143
Author(s):  
Andrew Lewis ◽  
Cory Seth Bridges ◽  
David Moorshead ◽  
Wa Du ◽  
Barry Zorman ◽  
...  

Abstract Among hematological malignancies, acute myeloid leukemia (AML) confers poor prognosis and limited progress has been made in the translation of decades of research into improved clinical outcomes. The current paradigm is that eradication of leukemia stem cells (LSCs) represents an avenue for overcoming relapse and refractory disease, but therapy focusing on eradicating this leukemic population has not been developed to-date. Further studies of unique signaling pathways and vulnerabilities in LSCs are warranted to design targeted therapies that could impact patient outcomes. To evaluate whether the stemness transcription factor Krüppel-like Factor 4 (KLF4) is important in the progression of AML, we retrovirally transduced MLL-AF9 into Klf4 fl/fl(fl/fl)and Klf4 fl/flVav-Cre (Δ/Δ) lineage − Sca-1 + c-Kit + (LSK) bone marrow cells and transplanted into C57BL/6 recipients. Here we report that the KLF4 promotes disease progression in the MLL-AF9-driven syngeneic AML mouse model. Strikingly, Δ/Δ AMLs exhibited improved disease latency and penetrance, and a seven-fold reduction in leukemia-initiating cell frequency in a secondary transplantation study. Δ/Δ LSCs, defined as leukemic granulocyte macrophage progenitors (L-GMP), demonstrated lessened clonogenicity in methylcellulose cultures and reduced representation of cells in the G 2/M phase of the cell cycle. RNAseq analysis of L-GMP revealed decreased expression of hematopoietic and leukemic stemness gene sets such as RAS signaling, and induction of inflammatory response gene (TNF-α, IFNα, IFNβ) pathways in Δ/Δ LSCs. To evaluate human relevance, we used CRISPR-Cas9 based targeted deletion of the human KLF4 gene in a MLL-AF9 PDX line and observed improved survival and defects in expansion as seen in the syngeneic mouse model . Lastly, to correlate KLF4-associated signaling present in murine AML LSCs with human AML, we used CRISPR-Cas9-based targeted deletion of KLF4 in MOLM-13 (KO) to generate two validated clones. MOLM-13 KO cells showed reduced cell proliferation in vitro and in vivo. Further, RPPA analysis revealed reduced RAS pathway activity (IR-β, β-Raf), accumulation of proteins associated with the S and G 1 phases (e.g., CDKN2A, p21, Histone H3, CENP-A), and decrease expression in regulators of the G 2/M checkpoint (e.g., Aurora A, B, Chk1, Plk1, Wee1, Cyclin B, pCDK1). Collectively, our data suggest a mechanism in which KLF4 contributes to AML disease by establishing a gene expression profile supporting stemness of AML LSCs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document