scholarly journals NF-kappa B as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene.

1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.

1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


Author(s):  
Н.Д. Газатова ◽  
В.В. Малащенко ◽  
М.Е. Меняйло ◽  
В.А. Шмаров ◽  
О.Б. Мелащенко ◽  
...  

Актуальность. Исследовали прямые эффекты гранулоцит-макрофагального колониестимулирующего фактора (GM-CSF) человека на функциональную активность субпопуляций T-лимфоцитов. Методы. CD3 Т-лимфоциты были выделены из крови здоровых доноров методом позитивной магнитной сепарации. T-клетки активировали частицами, конъюгированными с антителами (АТ) к молекулам CD3, СD28 и СD2 человека. Мембранную экспрессию CD3, СD4, СD45RA, СD197, CD25 и CD38 оценивали методом проточной цитофлюорометрии. Содержание интерферона-g (interferon-g, IFN-g), интерлейкина-2 (interleukin-2, IL-2). IL-4 и IL-10 в культуральных супернатантах определяли иммуноферментным методом. Результаты. Установлено, что GM-CSF в диапазоне концентраций 0,01-10,0 нг/мл не оказывал существенного влияния на содержание CD25 клеток, среди активированных Т-лимфоцитов. Вместе с тем, GM-CSF в концентрации 0,1-1,0 нг/мл обладал способностью заметно увеличивать содержание CD38 клеток среди наивных Т-клеток (СD45RA/СD197), а также среди Т-клеток центральной памяти (СD45RA/СD197), не оказывая при этом существенного влияния на экспрессию CD38, выявляемую среди эффекторных (СD45RA/СD197) и терминально дифференцированных (СD45RA/СD197) эффекторных Т-клеток. В относительно низкой концентрации (0,01 нг/мл) GM-CSF заметно снижал Т-клеточную продукцию INF-g, тогда как в высокой концентрации (10,0 нг/мл) усиливал продукцию IL-2 и IL-4, снижая при этом выработку IL-10. Заключение. Полученные данные позволяют предположить, что прямые эффекты GM-CSF на функциональную активность Т-клетки могут в значительной степени определяться как ее субпопуляционной принадлежностью, так и концентрацией цитокина в клеточном микроокружении. Background. We studied direct effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the function of T-lymphocyte subpopulations. Methods. CD3 T cells were isolated from the blood of healthy donors by positive magnetic separation. Isolated T cells were activated by particles conjugated with antibodies (Abs) to human CD3, CD28, and CD2 molecules. Membrane expression of CD4, СD45RA, СD197, CD25, and CD38 was evaluated by flow cytofluorometry. The contents of interferon-g (IFN-g), interleukin-2 (IL-2), IL-4, and IL-10 were determined in culture supernatants by the enzyme immunoassay. Results. GM-CSF at concentrations of 0.01-10.0 ng/ml had no significant impact on the content of CD25 cells among activated T lymphocytes. At the same time, GM-CSF at 0.1-1.0 ng/ml was able to noticeably increase the CD38 cell content among both naive CD45RA/CD197 T cells and central memory CD45RA/CD197 T cells, without significantly influencing the СD38 expression on effector CD45RA/CD197 and terminal-differentiated (CD45RA / CD197 effector T cells. GM-CSF at a relatively low concentration (0.01 ng/ml) significantly decreased T-cell production of INF-g whereas GM-CSF at a high concentration (10.0 ng/ml) detectably enhanced secretion of IL-2 and IL-4 and lowered IL-10 production. Conclusion. The results suggest that direct effects of GM-CSF on the T cell function could be largely determined by both its belonging to a subpopulation and the cytokine concentration in the cell microenvironment.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 713-723
Author(s):  
AM Stewart-Akers ◽  
JS Cairns ◽  
DJ Tweardy ◽  
SA McCarthy

The effects of granulocyte-macrophage colony-stimulating factor (GM- CSF) are not confined to cells of the myeloid lineage. GM-CSF has been shown to have effects on mature T cells and both mature and immature T- cell lines. We therefore examined the GM-CSF responsiveness of murine thymocytes to investigate whether GM-CSF also affected normal immature T lymphocytes. The studies presented here indicate that GM-CSF augments accessory cell (AC)-dependent T-cell receptor (TCR)-mediated proliferation of unseparated thymocyte populations. To identify the GM- CSF responsive cell type, thymic AC and T cells were examined for GM- CSF responsiveness. We found that GM-CSF augmentation of TCR-induced thymocyte proliferation appears to be mediated via augmentation of AC function, and not via direct effects on mature single-positive (SP) thymocytes. Enriched double-negative (DN) thymocytes were also tested for GM-CSF responsiveness. GM-CSF induced the proliferation of adult and fetal DN thymocytes in an AC-independent and TCR-independent single- cell assay. Thus, in contrast to the SP thymocytes, a DN thymocyte population was directly responsive to GM-CSF. GM-CSF therefore may play a direct role in the expansion of DN thymocytes and an indirect role in the expansion of SP thymocytes.


1993 ◽  
Vol 13 (12) ◽  
pp. 7399-7407
Author(s):  
E S Masuda ◽  
H Tokumitsu ◽  
A Tsuboi ◽  
J Shlomai ◽  
P Hung ◽  
...  

Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation.


Author(s):  
Н.Д. Газатова ◽  
В.В. Малащенко ◽  
М.Е. Меняйло ◽  
О.Б. Мелащенко ◽  
Е.М. Морозова ◽  
...  

Актуальность. Исследовали прямые эффекты гранулоцит-макрофагального колониестимулирующего фактора (GM-CSF) человека на функциональную активность субпопуляций T-лимфоцитов. Методы. CD3+ Т-лимфоциты были выделены из крови здоровых доноров методом позитивной магнитной сепарации. T-клетки активировали частицами, конъюгированными с антителами (АТ) к молекулам CD3, СD28 и СD2 человека. Мембранную экспрессию CD3, CD4, СD45RA, СD197, CD25 и CD38 оценивали методом проточной цитофлюорометрии. Содержание интерферона- Результаты. Установлено, что GM-CSF в диапазоне концентраций 0,01-10,0 нг/мл не оказывал существенного влияния на содержание CD25+ клеток, среди активированных Т-лимфоцитов. Вместе с тем, GM-CSF в концентрации 0,1 и 1,0 нг/мл обладал способностью заметно увеличивать содержание CD38+ клеток среди наивных СD45RA+/СD197+ Т-клеток, а также среди СD45RA-/СD197+ Т-клеток центральной памяти, не оказывая при этом существенного влияния на экспрессию CD38, выявляемую среди эффекторных СD45RA-/СD197- и терминально дифференцированных СD45RA+/СD197- эффекторных Т-клеток. В относительно низкой концентрации (0,01 нг/мл) GM-CSF заметно снижал Т-клеточную продукцию INF-γ, тогда как в высокой концентрации (10,0 нг/мл) усиливал продукцию IL-2 и IL-4, снижая при этом выработку IL-10. Заключение. Полученные данные предполагают, что GM-CSF способен поддерживать активацию относительно низкодифференцированных Т-клеток, не оказывая при этом значимого влияния на активацию высоко дифференцированных Т-клеток. Background. We investigated direct effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the functionality of T-lymphocyte subsets. Methods. CD3 + T cells were isolated from the blood of healthy donors by positive magnetic separation. The isolated T cells were activated with particles conjugated with antibodies (Abs) to human CD3, CD28, and CD2 molecules. The membrane expression of CD3, CD4, СD45RA, СD197, CD25, and CD38 was evaluated by flow cytofluorometry. Contents of interferon-γ (IFN- γ), interleukin-2 (IL-2), IL-4, and IL-10 in culture supernatants were determined by the enzyme immunoassay. Results. GM-CSF at 0.01-10.0 ng/ml had no significant effect on the content of CD25+ cells among activated T lymphocytes. At the same time, GM-CSF at 0.1-1.0 ng/ml was able to noticeably increase the content of CD38+ cells among both naive CD45RA+/CD197+ T cells and central memory CD45RA-/CD197+ T cells without affecting the СD38 expression on effector CD45RA- /CD197- and terminally differentiated CD45RA +/ CD197- effector T cells. At a relatively low concentration (0.01 ng/ml), GM-CSF significantly decreased T-cell production of INF-γ whereas at a high concentration (10.0 ng/ml), GM-CSF detectably enhanced the secretion of IL-2 and IL-4 while lowering IL-10 production. Conclusion. The findings suggest that GM-CSF is capable of supporting the activation of relatively low-differentiated T cells without significantly affecting the activation of highly differentiated T cells.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2689-2698 ◽  
Author(s):  
GW Cockerill ◽  
AG Bert ◽  
GR Ryan ◽  
JR Gamble ◽  
MA Vadas ◽  
...  

Abstract Nuclear factor of activated T cells (NFAT) was originally described as a T-cell-specific transcription factor athat supported the activation of cytokine gene expression and mediated the immunoregulatory effects of cyclosporin A (CsA). As we observed that activated endothelial cells also expressed NFAT, we tested the antiinflammatory properties of CsA in endothelial cells. Significantly, CsA completely suppressed the induction of NFAT in endothelial cells and inhibited the activity of granulocyte-macrophage colony-stimulating factor (GM-CSF) gene regulatory elements that use NFAT by 60%. CsA similarly mediated a reduction of up to 65% in GM-CSF mRNA and protein expression in activated endothelial cells. CsA also suppressed E-selectin, but not vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells, even though the E-selectin promoter is activated by NF-kappa B rather than NFAT. Hence, induction of cell surface expression of this leukocyte adhesion molecule by tumor necrosis factor (TNF)-alpha was reduced by 40% in the presence of CsA, and this was reflected by a 29% decrease in neutrophil adhesion. The effects of CsA on endothelial cells were also detected at the chromatin structure level, as DNasel hypersensitive sites within both the GM-CSF enhancer and the E-selectin promoter were suppressed by CsA. This represents the first report of NFAT in endothelial cells and suggests mechanisms by which CsA could function as an antiinflammatory agent.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1809-1813 ◽  
Author(s):  
H Enokihara ◽  
S Furusawa ◽  
H Nakakubo ◽  
H Kajitani ◽  
S Nagashima ◽  
...  

Abstract Anti-murine (m) interleukin-5 (IL-5) antibody was found to inhibit eosinophil (Eo) colony formation stimulated by recombinant human (rh) IL-5, but did not inhibit the production of Eo stimulated by rh IL-3 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Conditioned medium (CM) prepared from eosinophilic patients' T cells with interleukin-2 (IL-2) stimulation (T-IL-2-CM), was found to contain CFU- Eo growth-stimulating factor. Using anti-mIL-5 antibody, we demonstrated that T-IL-2-CM from patients with eosinophilia contained a significant amount of IL-5. We also detected IL-5 mRNA in T cells from eosinophilic patients with IL-2 stimulation. These results suggest that IL-5 plays an important role in the induction of selective eosinophilia in humans and that IL-5 is produced from T cells with IL-2 stimulation.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1809-1813
Author(s):  
H Enokihara ◽  
S Furusawa ◽  
H Nakakubo ◽  
H Kajitani ◽  
S Nagashima ◽  
...  

Anti-murine (m) interleukin-5 (IL-5) antibody was found to inhibit eosinophil (Eo) colony formation stimulated by recombinant human (rh) IL-5, but did not inhibit the production of Eo stimulated by rh IL-3 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Conditioned medium (CM) prepared from eosinophilic patients' T cells with interleukin-2 (IL-2) stimulation (T-IL-2-CM), was found to contain CFU- Eo growth-stimulating factor. Using anti-mIL-5 antibody, we demonstrated that T-IL-2-CM from patients with eosinophilia contained a significant amount of IL-5. We also detected IL-5 mRNA in T cells from eosinophilic patients with IL-2 stimulation. These results suggest that IL-5 plays an important role in the induction of selective eosinophilia in humans and that IL-5 is produced from T cells with IL-2 stimulation.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2689-2698 ◽  
Author(s):  
GW Cockerill ◽  
AG Bert ◽  
GR Ryan ◽  
JR Gamble ◽  
MA Vadas ◽  
...  

Nuclear factor of activated T cells (NFAT) was originally described as a T-cell-specific transcription factor athat supported the activation of cytokine gene expression and mediated the immunoregulatory effects of cyclosporin A (CsA). As we observed that activated endothelial cells also expressed NFAT, we tested the antiinflammatory properties of CsA in endothelial cells. Significantly, CsA completely suppressed the induction of NFAT in endothelial cells and inhibited the activity of granulocyte-macrophage colony-stimulating factor (GM-CSF) gene regulatory elements that use NFAT by 60%. CsA similarly mediated a reduction of up to 65% in GM-CSF mRNA and protein expression in activated endothelial cells. CsA also suppressed E-selectin, but not vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells, even though the E-selectin promoter is activated by NF-kappa B rather than NFAT. Hence, induction of cell surface expression of this leukocyte adhesion molecule by tumor necrosis factor (TNF)-alpha was reduced by 40% in the presence of CsA, and this was reflected by a 29% decrease in neutrophil adhesion. The effects of CsA on endothelial cells were also detected at the chromatin structure level, as DNasel hypersensitive sites within both the GM-CSF enhancer and the E-selectin promoter were suppressed by CsA. This represents the first report of NFAT in endothelial cells and suggests mechanisms by which CsA could function as an antiinflammatory agent.


1993 ◽  
Vol 13 (12) ◽  
pp. 7399-7407 ◽  
Author(s):  
E S Masuda ◽  
H Tokumitsu ◽  
A Tsuboi ◽  
J Shlomai ◽  
P Hung ◽  
...  

Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation.


Sign in / Sign up

Export Citation Format

Share Document