Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases

1992 ◽  
Vol 12 (5) ◽  
pp. 2331-2338
Author(s):  
J Kulkosky ◽  
K S Jones ◽  
R A Katz ◽  
J P Mack ◽  
A M Skalka

Our comparison of deduced amino acid sequences for retroviral/retrotransposon integrase (IN) proteins of several organisms, including Drosophila melanogaster and Schizosaccharomyces pombe, reveals strong conservation of a constellation of amino acids characterized by two invariant aspartate (D) residues and a glutamate (E) residue, which we refer to as the D,D(35)E region. The same constellation is found in the transposases of a number of bacterial insertion sequences. The conservation of this region suggests that the component residues are involved in DNA recognition, cutting, and joining, since these properties are shared among these proteins of divergent origin. We introduced amino acid substitutions in invariant residues and selected conserved and nonconserved residues throughout the D,D(35)E region of Rous sarcoma virus IN and in human immunodeficiency virus IN and assessed their effect upon the activities of the purified, mutant proteins in vitro. Changes of the invariant and conserved residues typically produce similar impairment of both viral long terminal repeat (LTR) oligonucleotide cleavage referred to as the processing reaction and the subsequent joining of the processed LTR-based oligonucleotides to DNA targets. The severity of the defects depended upon the site and the nature of the amino acid substitution(s). All substitutions of the invariant acidic D and E residues in both Rous sarcoma virus and human immunodeficiency virus IN dramatically reduced LTR oligonucleotide processing and joining to a few percent or less of wild type, suggesting that they are essential components of the active site for both reactions.(ABSTRACT TRUNCATED AT 250 WORDS)

1992 ◽  
Vol 12 (5) ◽  
pp. 2331-2338 ◽  
Author(s):  
J Kulkosky ◽  
K S Jones ◽  
R A Katz ◽  
J P Mack ◽  
A M Skalka

Our comparison of deduced amino acid sequences for retroviral/retrotransposon integrase (IN) proteins of several organisms, including Drosophila melanogaster and Schizosaccharomyces pombe, reveals strong conservation of a constellation of amino acids characterized by two invariant aspartate (D) residues and a glutamate (E) residue, which we refer to as the D,D(35)E region. The same constellation is found in the transposases of a number of bacterial insertion sequences. The conservation of this region suggests that the component residues are involved in DNA recognition, cutting, and joining, since these properties are shared among these proteins of divergent origin. We introduced amino acid substitutions in invariant residues and selected conserved and nonconserved residues throughout the D,D(35)E region of Rous sarcoma virus IN and in human immunodeficiency virus IN and assessed their effect upon the activities of the purified, mutant proteins in vitro. Changes of the invariant and conserved residues typically produce similar impairment of both viral long terminal repeat (LTR) oligonucleotide cleavage referred to as the processing reaction and the subsequent joining of the processed LTR-based oligonucleotides to DNA targets. The severity of the defects depended upon the site and the nature of the amino acid substitution(s). All substitutions of the invariant acidic D and E residues in both Rous sarcoma virus and human immunodeficiency virus IN dramatically reduced LTR oligonucleotide processing and joining to a few percent or less of wild type, suggesting that they are essential components of the active site for both reactions.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 75 (19) ◽  
pp. 9526-9531 ◽  
Author(s):  
Theodora Hatziioannou ◽  
Stephen P. Goff

ABSTRACT A direct comparison demonstrates that Rous sarcoma virus is capable of infecting aphidicolin-arrested cells 10-fold more efficiently than murine leukemia virus but less efficiently than human immunodeficiency virus. The efficiency of infection of nondividing cells by the three viruses correlates with the respective ability of each viral DNA to enter the nucleus.


1986 ◽  
Vol 190 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Perry B. Hackett ◽  
Robert B. Petersen ◽  
Charles H. Hensel ◽  
Fernando Albericio ◽  
Samuel I. Gunderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document