scholarly journals TATA-binding protein and associated factors in polymerase II and polymerase III transcription

1993 ◽  
Vol 13 (12) ◽  
pp. 7953-7960
Author(s):  
R E Meyers ◽  
P A Sharp

Transcription by RNA polymerase I (pol I), pol II, and pol III requires the TATA-binding protein (TBP). This protein functions in association with distinct TBP-associated factors (TAFs) which may specify the nature of the polymerase selected for initiation at a promoter site. In the pol III transcription system, the TBP-TAF complex is a component of the TFIIIB factor. This factor has been resolved into a TBP-TAF complex and another component, both of which are required for reconstitution of transcription by pol III. Neither the TBP-TAF complexes B-TFIID and D-TFIID, which were previously characterized as active for pol II transcription, nor TBP alone can complement pol III transcription reactions that are dependent upon the TBP-TAF subcomponent of TFIIIB. Surprisingly, the TBP-TAF subcomponent of TFIIIB is active in reconstitution of pol II transcription.

1993 ◽  
Vol 13 (12) ◽  
pp. 7953-7960 ◽  
Author(s):  
R E Meyers ◽  
P A Sharp

Transcription by RNA polymerase I (pol I), pol II, and pol III requires the TATA-binding protein (TBP). This protein functions in association with distinct TBP-associated factors (TAFs) which may specify the nature of the polymerase selected for initiation at a promoter site. In the pol III transcription system, the TBP-TAF complex is a component of the TFIIIB factor. This factor has been resolved into a TBP-TAF complex and another component, both of which are required for reconstitution of transcription by pol III. Neither the TBP-TAF complexes B-TFIID and D-TFIID, which were previously characterized as active for pol II transcription, nor TBP alone can complement pol III transcription reactions that are dependent upon the TBP-TAF subcomponent of TFIIIB. Surprisingly, the TBP-TAF subcomponent of TFIIIB is active in reconstitution of pol II transcription.


2001 ◽  
Vol 21 (7) ◽  
pp. 2292-2297 ◽  
Author(s):  
Imran Siddiqi ◽  
John Keener ◽  
Loan Vu ◽  
Masayasu Nomura

ABSTRACT Initiation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae involves upstream activation factor (UAF), core factor, the TATA binding protein (TBP), and Rrn3p in addition to Pol I. We found previously that yeast strains carrying deletions in the UAF component RRN9switch completely to the use of Pol II for rRNA transcription, with no residual Pol I transcription. These polymerase-switched strains initially grow very slowly, but subsequent expansion in the number of rDNA repeats on chromosome XII leads to better growth. Recently, it was reported that TBP overexpression could bypass the requirement of UAF for Pol I transcription in vivo, producing nearly wild-type levels of growth in UAF mutant strains (P. Aprikian, B. Moorefield, and R. H. Reeder, Mol. Cell. Biol. 20:5269–5275, 2000). Here, we demonstrate that deletions in the UAF component RRN5,RRN9, or RRN10 lead to Pol II transcription of rDNA. TBP overexpression does not suppress UAF mutation, and these strains continue to use Pol II for rRNA transcription. We do not find evidence for even low levels of Pol I transcription in UAF mutant strains carrying overexpressed TBP. In diploid strains lacking both copies of the UAF componentRRN9, Pol II transcription of rDNA is more strongly repressed than in haploid strains but TBP overexpression still fails to activate Pol I. These results emphasize that UAF plays an essential role in activation of Pol I transcription and silencing of Pol II transcription of rDNA and that TBP functions to recruit the Pol I machinery in a manner completely dependent on UAF.


1999 ◽  
Vol 19 (6) ◽  
pp. 3951-3957 ◽  
Author(s):  
Ryan T. Ranallo ◽  
Kevin Struhl ◽  
Laurie A. Stargell

ABSTRACT Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L,K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.


2020 ◽  
Vol 295 (15) ◽  
pp. 4782-4795 ◽  
Author(s):  
Philipp E. Merkl ◽  
Michael Pilsl ◽  
Tobias Fremter ◽  
Katrin Schwank ◽  
Christoph Engel ◽  
...  

RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I–associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I–specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.


2018 ◽  
Author(s):  
Philipp E. Merkl ◽  
Michael Pilsl ◽  
Tobias Fremter ◽  
Gernot Längst ◽  
Philipp Milkereit ◽  
...  

AbstractEukaryotic RNA polymerases I and III (Pol I and III) consist of core subunits, which are conserved in RNA polymerase II (Pol II). Additionally, Pol I and III have specific subunits, associating with the so-called ‘lobe’ structure first described within Pol II. In Pol I of the yeast S. cerevisiae, these are Rpa34.5, and the N-terminal domains of Rpa49 and Rpa12.2, here referred to as the lobe-binding module (lb-module). We analyzed functions of the lb-module in a defined in vitro transcription system. Cooperation between lb-module components influenced transcription fidelity, elongation speed, and release of stalled Pol I complexes to continue elongation. Interestingly, lb-module containing Pol I and III, but not Pol II, were able to transcribe nucleosomal templates. Our data suggest, how the Pol I specific subunits may contribute to accurate and processive transcription of ribosomal RNA genes.


2019 ◽  
Author(s):  
Philipp E. Merkl ◽  
Michael Pilsl ◽  
Tobias Fremter ◽  
Katrin Schwank ◽  
Christoph Engel ◽  
...  

AbstractRNA polymerase I (Pol I) is a highly efficient enzyme specialized to synthesize most of the ribosomal RNA. After nucleosome deposition at each round of replication the Pol I transcription machinery has to deal with nucleosomal barriers. It was suggested that Pol I-associated factors facilitate chromatin transcription, but it is not known whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here we used in vitro transcription assays to study purified Pol I of the yeast S. cerevisiae and Pol I mutants in comparison to Pol II and Pol III to pass a nucleosome. Under identical conditions, purified Pol I and Pol III, but not Pol II, were able to transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. The contribution of Pol I specific subunit domains to efficient passage through nucleosomes in context with transcription rate and processivity is discussed.


2004 ◽  
Vol 24 (14) ◽  
pp. 6419-6429 ◽  
Author(s):  
Peter Eriksson ◽  
Debabrata Biswas ◽  
Yaxin Yu ◽  
James M. Stewart ◽  
David J. Stillman

ABSTRACT The Saccharomyces cerevisiae Nhp6 protein is related to the high-mobility-group B family of architectural DNA-binding proteins that bind DNA nonspecifically but bend DNA sharply. Nhp6 is involved in transcriptional activation by both RNA polymerase II (Pol II) and Pol III. Our previous genetic studies have implicated Nhp6 in facilitating TATA-binding protein (TBP) binding to some Pol II promoters in vivo, and we have used a novel genetic screen to isolate 32 new mutations in TBP that are viable in wild-type cells but lethal in the absence of Nhp6. The TBP mutations that are lethal in the absence of Nhp6 cluster in three regions: on the upper surface of TBP that may have a regulatory role, near residues that contact Spt3, or near residues known to contact either TFIIA or Brf1 (in TFIIIB). The latter set of mutations suggests that Nhp6 becomes essential when a TBP mutant compromises its ability to interact with either TFIIA or Brf1. Importantly, the synthetic lethality for some of the TBP mutations is suppressed by a multicopy plasmid with SNR6 or by an spt3 mutation. It has been previously shown that nhp6ab mutants are defective in expressing SNR6, a Pol III-transcribed gene encoding the U6 splicing RNA. Chromatin immunoprecipitation experiments show that TBP binding to SNR6 is reduced in an nhp6ab mutant. Nhp6 interacts with Spt16/Pob3, the yeast equivalent of the FACT elongation complex, consistent with nhp6ab cells being extremely sensitive to 6-azauracil (6-AU). However, this 6-AU sensitivity can be suppressed by multicopy SNR6 or BRF1. Additionally, strains with SNR6 promoter mutations are sensitive to 6-AU, suggesting that decreased SNR6 RNA levels contribute to 6-AU sensitivity. These results challenge the widely held belief that 6-AU sensitivity results from a defect in transcriptional elongation.


1996 ◽  
Vol 133 (2) ◽  
pp. 225-234 ◽  
Author(s):  
P Jordan ◽  
M Mannervik ◽  
L Tora ◽  
M Carmo-Fonseca

Here we show that the TATA-binding protein (TBP) is localized in the nucleoplasm and in the nucleolus of mammalian cells, consistent with its known involvement in transcription by RNA polymerase I, II, and III. In the nucleolus of actively growing cells, TBP colocalizes with upstream binding factor (UBF) and RNA polymerase I at the sites of rRNA transcription. During mitosis, when rRNA synthesis is down-regulated, TBP colocalizes with TBP-associated factors for RNA polymerase I (TAF(I)s), UBF, and RNA polymerase I on the chromosomal regions containing the rRNA genes. Treatment of cells with a low concentration of actinomycin D inhibits rRNA synthesis and causes a redistribution of the rRNA genes that become concentrated in clusters at the periphery of the nucleolus. A similar redistribution was observed for the major components of the rRNA transcription machinery (i.e., TBP, TAF(I)s, UBF, and RNA polymerase I), which still colocalized with each other. Furthermore, anti-TBP antibodies are shown to coimmunoprecipitate TBP and TAF(I)63 in extracts prepared from untreated and actinomycin D-treated cells. Collectively, the data indicate that in vivo TBP/promoter selectivity factor, UBF, and RNA polymerase I remain associated with both active and inactive rRNA genes.


1997 ◽  
Vol 17 (4) ◽  
pp. 1787-1795 ◽  
Author(s):  
O Gadal ◽  
S Mariotte-Labarre ◽  
S Chedin ◽  
E Quemeneur ◽  
C Carles ◽  
...  

A34.5, a phosphoprotein copurifying with RNA polymerase I (Pol I), lacks homology to any component of the Pol II or Pol III transcription complexes. Cells devoid of A34.5 hardly affect growth and rRNA synthesis and generate a catalytically active but structurally modified enzyme also lacking subunit A49 upon in vitro purification. Other Pol I-specific subunits (A49, A14, and A12.2) are nonessential for growth at 30 degrees C but are essential (A49 and A12.2) or helpful (A14) at 25 or 37 degrees C. Triple mutants without A34.5, A49, and A12.2 are viable, but inactivating any of these subunits together with A14 is lethal. Lethality is rescued by expressing pre-rRNA from a Pol II-specific promoter, demonstrating that these subunits are collectively essential but individually dispensable for rRNA synthesis. A14 and A34.5 single deletions affect the subunit composition of the purified enzyme in pleiotropic but nonoverlapping ways which, if accumulated in the double mutants, provide a structural explanation for their strict synthetic lethality. A34.5 (but not A14) becomes quasi-essential in strains lacking DNA topoisomerase I, suggesting a specific role of this subunit in helping Pol I to overcome the topological constraints imposed on ribosomal DNA by transcription.


Sign in / Sign up

Export Citation Format

Share Document