scholarly journals Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition.

1993 ◽  
Vol 13 (4) ◽  
pp. 2401-2410 ◽  
Author(s):  
D A Jackson ◽  
K E Rowader ◽  
K Stevens ◽  
C Jiang ◽  
P Milos ◽  
...  

The liver-specific enhancer of the serum albumin gene contains an essential segment, designated eH, which binds the hepatocyte nuclear factor 3 alpha (HNF3 alpha) and ubiquitous nuclear factor 1/CCAAT transcription factor (NF1/CTF) proteins in tight apposition. We previously showed that activation of transcription by the eH site was correlated with an increase in intracellular HNF3 alpha levels during the in vitro differentiation of the hepatic cell line H2.35. We now show that transfection of an HNF3 alpha cDNA expression vector into dedifferentiated H2.35 cells is sufficient to induce transcription from the eH site. Mutational analysis of the enhancer demonstrates that NF1/CTF cooperates with HNF3 alpha to induce enhancer activity. However, when the eH site is removed from the context of the enhancer, NF1/CTF can inhibit transcriptional activation by HNF3 alpha. We conclude that the ternary complex of HNF3 alpha, NF1/CTF, and the eH site forms a novel, composite regulatory element that is sensitive to the local DNA sequence environment and suggest that the transcriptional stimulatory activity of NF1/CTF depends on its higher-order interactions with other proteins during hepatocyte differentiation.

1993 ◽  
Vol 13 (4) ◽  
pp. 2401-2410
Author(s):  
D A Jackson ◽  
K E Rowader ◽  
K Stevens ◽  
C Jiang ◽  
P Milos ◽  
...  

The liver-specific enhancer of the serum albumin gene contains an essential segment, designated eH, which binds the hepatocyte nuclear factor 3 alpha (HNF3 alpha) and ubiquitous nuclear factor 1/CCAAT transcription factor (NF1/CTF) proteins in tight apposition. We previously showed that activation of transcription by the eH site was correlated with an increase in intracellular HNF3 alpha levels during the in vitro differentiation of the hepatic cell line H2.35. We now show that transfection of an HNF3 alpha cDNA expression vector into dedifferentiated H2.35 cells is sufficient to induce transcription from the eH site. Mutational analysis of the enhancer demonstrates that NF1/CTF cooperates with HNF3 alpha to induce enhancer activity. However, when the eH site is removed from the context of the enhancer, NF1/CTF can inhibit transcriptional activation by HNF3 alpha. We conclude that the ternary complex of HNF3 alpha, NF1/CTF, and the eH site forms a novel, composite regulatory element that is sensitive to the local DNA sequence environment and suggest that the transcriptional stimulatory activity of NF1/CTF depends on its higher-order interactions with other proteins during hepatocyte differentiation.


1988 ◽  
Vol 8 (6) ◽  
pp. 2555-2561
Author(s):  
A Jakobovits ◽  
D H Smith ◽  
E B Jakobovits ◽  
D J Capon

An important point of regulation in the reproductive growth and latency of the human and simian immunodeficiency viruses (HIV and SIV, respectively) is provided by virally encoded trans-activators (tat), proteins capable of dramatically increasing viral gene expression. The mechanism of this autostimulatory pathway has remained unclear, however, with substantial effects having been reported at the level of either mRNA accumulation, translational efficiency, or both. Our previous findings indicated that trans-activation results primarily from induction of RNA levels but could not distinguish between the roles of transcriptional rate, RNA stabilization, and RNA transport in this event. In addition, the boundaries of tat-responding elements, which would be valuable in elucidating the mode of tat action, are not precisely known. In this study, HIV-1 and HIV-2 long terminal repeat-directed expression was characterized by using an in vitro nuclear transcription assay to clarify this mechanism, and a detailed mutational analysis was undertaken to localize precisely the sequences participating in this process. Two key findings were revealed: an increased transcription rate was the primary event in tat-mediated activation of HIV-1 and HIV-2, and trans-activation was impaired by mutations in two regions, the TATA box and sequences between +19 to +42, a region lacking enhancer activity. These results implicate a discrete 3' regulatory element in the transcriptional activation of the HIVs.


1988 ◽  
Vol 8 (6) ◽  
pp. 2555-2561 ◽  
Author(s):  
A Jakobovits ◽  
D H Smith ◽  
E B Jakobovits ◽  
D J Capon

An important point of regulation in the reproductive growth and latency of the human and simian immunodeficiency viruses (HIV and SIV, respectively) is provided by virally encoded trans-activators (tat), proteins capable of dramatically increasing viral gene expression. The mechanism of this autostimulatory pathway has remained unclear, however, with substantial effects having been reported at the level of either mRNA accumulation, translational efficiency, or both. Our previous findings indicated that trans-activation results primarily from induction of RNA levels but could not distinguish between the roles of transcriptional rate, RNA stabilization, and RNA transport in this event. In addition, the boundaries of tat-responding elements, which would be valuable in elucidating the mode of tat action, are not precisely known. In this study, HIV-1 and HIV-2 long terminal repeat-directed expression was characterized by using an in vitro nuclear transcription assay to clarify this mechanism, and a detailed mutational analysis was undertaken to localize precisely the sequences participating in this process. Two key findings were revealed: an increased transcription rate was the primary event in tat-mediated activation of HIV-1 and HIV-2, and trans-activation was impaired by mutations in two regions, the TATA box and sequences between +19 to +42, a region lacking enhancer activity. These results implicate a discrete 3' regulatory element in the transcriptional activation of the HIVs.


2002 ◽  
Vol 13 (13) ◽  
pp. 1583-1593 ◽  
Author(s):  
Colleen Notley ◽  
Annie Killoran ◽  
Cherie Cameron ◽  
Kimberly Wynd ◽  
Christine Hough ◽  
...  

2000 ◽  
Vol 275 (17) ◽  
pp. 12515-12520 ◽  
Author(s):  
Evi Soutoglou ◽  
George Papafotiou ◽  
Nitsa Katrakili ◽  
Iannis Talianidis

2012 ◽  
Vol 446 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Jenny L. Kerschner ◽  
Ann Harris

A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.


1999 ◽  
Vol 19 (10) ◽  
pp. 6509-6522 ◽  
Author(s):  
Frances M. Sladek ◽  
Michael D. Ruse ◽  
Luviminda Nepomuceno ◽  
Shih-Ming Huang ◽  
Michael R. Stallcup

ABSTRACT Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 α1 (HNF4α1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4α2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4α1 and HNF4α2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4α1 and -α2 and that that contact is different in the HNF4α1 and HNF4α2 isoforms. Finally, we propose a model in which the F domain of HNF4α1 acts as a negative regulatory region for transactivation and in which the α2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4α1 and -α2 suggests that this model may be relevant to other nuclear receptors as well.


2002 ◽  
Vol 22 (15) ◽  
pp. 5626-5637 ◽  
Author(s):  
Sohail Malik ◽  
Annika E. Wallberg ◽  
Yun Kyoung Kang ◽  
Robert G. Roeder

ABSTRACT The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) regulates the expression of many liver-specific genes both during development and in the adult animal. Towards understanding the molecular mechanisms by which HNF-4 functions, we have established in vitro transcription systems that faithfully recapitulate HNF-4 activity. Here we have focused on the coactivator requirements for HNF-4, especially for the multicomponent TRAP/SMCC/Mediator complex that has emerged as the central regulatory module of the transcription apparatus. Using a system that has been reconstituted from purified transcription factors, as well as one consisting of unfractionated nuclear extract from which TRAP/SMCC/Mediator has been depleted by specific antibodies, we demonstrate a strong dependence of HNF-4 function on this coactivator. Importantly, we further show a TRAP/SMCC/Mediator-dependence for HNF-4 transcriptional activation from chromatin templates. The latter involves cooperation with the histone acetyltransferase-containing coactivator p300, in accord with a synergistic mode of action of the two divergent coactivators. We also show that HNF-4 and TRAP/SMCC/Mediator can interact physically. This interaction likely involves primary HNF-4 activation function 2 (AF-2)-dependent interactions with the TRAP220 subunit of TRAP/SMCC/Mediator and secondary (AF-2-independent) interactions with TRAP170/RGR1. Finally, recruitment experiments using immobilized templates strongly suggest that the functional consequences of the physical interaction probably are manifested at a postrecruitment step in the activation pathway.


Sign in / Sign up

Export Citation Format

Share Document