splicing variants
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 62)

H-INDEX

37
(FIVE YEARS 0)

Author(s):  
Tetsuya Niihori ◽  
Reo Tanoshima ◽  
Yoji Sasahara ◽  
Atsushi Sato ◽  
Masahiro Irie ◽  
...  

MECOM encodes the transcriptional regulators, EVI1 and MDS1-EVI1, from two distinct transcription start sites. EVI1 plays important roles in hematopoiesis and stem cell self-renewal. Recently, our group and others revealed that individuals with MECOM variants present diverse hematological and skeletal defects, including radioulnar synostosis (RUS). In the present study, we analyzed two families suspected with MECOM-associated syndrome. In family 1, a MECOM splicing variant (c.2285+1G>A) was identified in an individual with bone marrow failure (TRS4) without RUS and her mother, who had mild leukocytopenia, thrombocytopenia, and bilateral RUS. A copy neutral loss of heterozygosity decreasing the variant allele frequency was observed in the bone marrow of TRS4 and the peripheral blood leukocytes of her mother. However, TRS4 remained transfusion-dependent. In family 2, a MECOM variant (c.2208-4A>G), which was predicted to cause a cryptic acceptor site that results in a 3-base insertion (an insertion of Ser) in the mRNA, was identified in the proband, with bone marrow failure; this variant was also observed in her brother and father, both of whom have skeletal malformations, but no cytopenia. RT-PCR using leukocytes revealed a transcript with a 3-bp insertion in the proband, her brother, and the father, suggesting that the transcript variant with a 3-bp insertion is independent of blood phenotype. Collectively, these results suggest the presence of intrafamilial clinical heterogeneity in both families with MECOM splicing variants. Somatic genetic event may complicate the understanding of clinical variability among family members.



Author(s):  
Mackenzie Postel ◽  
Julie O. Culver ◽  
Charité Ricker ◽  
David Craig

The vast volume of data that has been generated as a result of the next-generation sequencing revolution is overwhelming to sift through and interpret. Parsing functional vs. non-functional and benign vs. pathogenic variants continues to be a challenge. Out of three billion bases, the genomes of two given individuals will only differ by about 3 million variants (0.1%). Furthermore, only a small fraction of these are biologically-relevant and, of those that are functional, only a handful actually drive disease pathology. While whole genome and exome sequencing have transformed our collective understanding of the role that genetics plays in disease pathogenesis, there are certain conditions and populations for whom DNA-level data has failed to produce a molecular diagnosis. Patients of non-White race/non-European ancestry are disproportionately affected by “variants of unknown/uncertain significance” (VUS). This limits the scope of precision medicine for minority patients and perpetuates health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret in DNA alone. RNA analysis is capable of illuminating the consequences of VUS thereby allowing for their reclassification as pathogenic vs. benign. Here we review the critical role, going forward, of transcriptome analysis for clarifying VUS in both neoplastic and non-neoplastic diseases.



2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Hojny ◽  
Romana Michalkova ◽  
Eva Krkavcova ◽  
Quang Hiep Bui ◽  
Michaela Bartu ◽  
...  

AbstractHepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor and putative biomarker of solid tumours. Recently, we have revealed a variety of HNF1B mRNA alternative splicing variants (ASVs) with unknown, but potentially regulatory, functions. The aim of our work was to quantify the most common variants and compare their expression in tumour and non-tumour tissues of the large intestine, prostate, and kidney. The HNF1B mRNA variants 3p, Δ7, Δ7–8, and Δ8 were expressed across all the analysed tissues in 28.2–33.5%, 1.5–2%, 0.8–1.7%, and 2.3–6.9% of overall HNF1B mRNA expression, respectively, and occurred individually or in combination. The quantitative changes of ASVs between tumour and non-tumour tissue were observed for the large intestine (3p, Δ7–8), prostate (3p), and kidney samples (Δ7). Decreased expression of the overall HNF1B mRNA in the large intestine and prostate cancer samples compared with the corresponding non-tumour samples was observed (p = 0.019 and p = 0.047, respectively). The decreased mRNA expression correlated with decreased protein expression in large intestine carcinomas (p < 0.001). The qualitative and quantitative pattern of the ASVs studied by droplet digital PCR was confirmed by next-generation sequencing, which suggests the significance of the NGS approach for further massive evaluation of the splicing patterns in a variety of genes.



2022 ◽  
Vol 11 ◽  
Author(s):  
Maria A. Pantaleo ◽  
Milena Urbini ◽  
Angela Schipani ◽  
Margherita Nannini ◽  
Valentina Indio ◽  
...  

BackgroundSDH-deficient gastrointestinal stromal tumors (GIST) account for 20–40% of all KIT/PDGFRA-negative GIST and are due to mutations in one of the four SDH-complex subunits, with SDHA mutations as the most frequent. Here we sought to evaluate the presence and prevalence of SDHA variants in the germline lineage in a population of SDHA-deficient GIST.MethodsGermline SDHA status was assessed by Sanger sequencing on a series of 14 patients with gastric SDHA-deficient GIST.ResultsAll patients carried a germline SDHA pathogenic variant, ranging from truncating, missense, or splicing variants. The second hit was the loss of the wild-type allele or an additional somatic mutation. One-third of the patients were over 50 years old. GIST was the only disease presentation in all cases except one, with no personal or familial cancer history. Seven metastatic cases received a multimodal treatment integrating surgery, loco-regional and medical therapy. The mean follow-up time was of 10 years, confirming the indolent clinical course of the disease.ConclusionSDHA germline variants are highly frequent in SDHA-deficient GIST, and the disease may occur also in older adulthood. Genetic testing and surveillance of SDHA-mutation carriers and relatives should be performed.



Nitric Oxide ◽  
2022 ◽  
Author(s):  
Shingo Kasamatsu ◽  
Hiroyasu Tsutsuki ◽  
Tomoaki Ida ◽  
Tomohiro Sawa ◽  
Yasuo Watanabe ◽  
...  


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Jose J. G. Marin ◽  
Maria Reviejo ◽  
Meraris Soto ◽  
Elisa Lozano ◽  
Maitane Asensio ◽  
...  

The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.



2021 ◽  
Author(s):  
Woo-Jong Hong ◽  
Su Kyoung Lee ◽  
Seok-Hui Kim ◽  
Yu-Jin Kim ◽  
Sunok Moon ◽  
...  

Abstract Rice is an important food staple that is consumed by half of the human population. Therefore, understanding the regulatory mechanism of male fertility in rice can improve production by enhancing the efficiency of hybrid seed production. However, information on the control mechanism of male fertility by anther dehiscence or wall development in rice is very limited. To further understand the regulatory mechanism for anther dehiscence in rice, we carried out transcriptome analysis for two tissues: the anther wall and pollen at the anthesis stage. With the anatomical meta-expression data, in addition to these tissues, the differentially expressed genes (DEGs) between the two tissues were further refined to identify 1,717 pollen-preferred genes and 534 anther wall-preferred genes. A GUS transgenic line and RT-qPCR analysis for anther wall-preferred genes supported the fidelity of our gene candidates for further analysis. The refined DEGs were functionally classified through Gene Ontology (GO) enrichment and MapMan analyses. Through the analysis of cis-acting elements and alternative splicing variants, we also suggest the feature of regulatory sequences in promoter regions for anther wall-preferred expression and provide information of the unique splicing variants in anther walls. Subsequently, it was found that hormone signaling and the resulting transcriptional regulation pathways may play an important role in anther dehiscence and anther wall development. Our result could provide useful insight for future research to broaden the molecular mechanism of anther dehiscence or anther wall development in rice.



2021 ◽  
Author(s):  
Maha Mohamed ◽  
James Tellez ◽  
Carsten Bergmann ◽  
Daniel P. Gale ◽  
John A. Sayer ◽  
...  


2021 ◽  
Author(s):  
Praveen Anand ◽  
Patrick J. Lenehan ◽  
Michiel Niesen ◽  
Unice Yoo ◽  
Dhruti Patwardhan ◽  
...  

AbstractAcute cardiac injury has been observed in a subset of COVID-19 patients, but the molecular basis for this clinical phenotype is unknown. It has been hypothesized that molecular mimicry may play a role in triggering an autoimmune inflammatory reaction in some individuals after SARS-CoV-2 infection. Here we investigate if linear peptides contained in proteins that are primarily expressed in the heart also occur in the SARS-CoV-2 proteome. Specifically, we compared the library of 136,704 8-mer peptides from 144 human proteins (including splicing variants) to 9,926 8-mers from all 17 viral proteins in the reference SARS-CoV-2 proteome. No 8-mers were exactly identical between the reference human proteome and the reference SARS-CoV-2 proteome. However, there were 45 8-mers that differed by only one amino acid when compared to the reference SARS-CoV-2 proteome. Interestingly, analysis of protein-coding mutations from 141,456 individuals showed that one of these 8-mers from the SARS-CoV-2 Replicase polyprotein 1a/1ab (KIALKGGK) is identical to a MYH6 peptide encoded by the c.5410C>A (Q1804K) genetic variation, which has been observed at low prevalence in Africans/African Americans (0.08%), East Asians (0.3%), South Asians (0.06%) and Latino/Admixed Americans (0.003%). Furthermore, analysis of 4.85 million SARS-CoV-2 genomes from over 200 countries shows that viral evolution has already resulted in 20 additional 8-mer peptides that are identical to human heart-enriched proteins encoded by reference sequences or genetic variants. Whether such mimicry contributes to cardiac inflammation during or after COVID-19 illness warrants further experimental evaluation. We suggest that SARS-CoV-2 variants harboring peptides identical to human cardiac proteins should be investigated as ‘viral variants of cardiac interest’.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinmin Li ◽  
Cun-Yu Wang

AbstractRNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.



Sign in / Sign up

Export Citation Format

Share Document