orphan nuclear receptor
Recently Published Documents


TOTAL DOCUMENTS

922
(FIVE YEARS 146)

H-INDEX

91
(FIVE YEARS 6)

Author(s):  
Valerie P. O’Brien ◽  
Amanda L. Lewis ◽  
Nicole M. Gilbert

Recurrent urinary tract infections (rUTI) are a costly clinical problem affecting millions of women worldwide each year. The majority of rUTI cases are caused by uropathogenic Escherichia coli (UPEC). Data from humans and mouse models indicate that some instances of rUTI are caused by UPEC emerging from latent reservoirs in the bladder. Women with vaginal dysbiosis, typically characterized by high levels of Gardnerella and other anaerobes, are at increased risk of UTI. Multiple studies have detected Gardnerella in urine collected by transurethral catheterization (to limit vaginal contamination), suggesting that some women experience routine urinary tract exposures. We recently reported that inoculation of Gardnerella into the bladder triggers rUTI from UPEC bladder reservoirs in a mouse model. Here we performed whole bladder RNA-seq to identify host pathways involved in Gardnerella-induced rUTI. We identified a variety host pathways differentially expressed in whole bladders following Gardnerella exposure, such as pathways involved in inflammation/immunity and epithelial turnover. At the gene level, we identified upregulation of Immediate Early (IE) genes, which are induced in various cell types shortly following stimuli like infection and inflammation. One such upregulated IE gene was the orphan nuclear receptor Nur77 (aka Nr4a1). Pilot experiments in Nur77-/- mice suggest that Nur77 is necessary for Gardnerella exposure to trigger rUTI from UPEC reservoirs. These findings demonstrate that bladder gene expression can be impacted by short-lived exposures to urogenital bacteria and warrant future examination of responses in distinct cell types, such as with single cell transcriptomic technologies. The biological validation studies in Nur77-/- mice lay the groundwork for future studies investigating Nur77 and the Immediate Early response in rUTI.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhiping Fu ◽  
Xing Liang ◽  
Ligang Shi ◽  
Liang Tang ◽  
Danlei Chen ◽  
...  

AbstractPancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.


Author(s):  
Giuseppe Faudone ◽  
Whitney Kilu ◽  
Xiaomin Ni ◽  
Apirat Chaikuad ◽  
Sridhar Sreeramulu ◽  
...  

2021 ◽  
Author(s):  
Jing Li ◽  
Wei Wang ◽  
Hanming Gu

REV-ERB is an orphan nuclear receptor that is widely expressed in the brain and inhibits transcriptional activities. A variety of genes affect the activity and expression of REV-ERB. In this study, our objective is to identify significant signaling pathways and biological processes in the knockout of the REV-ERB mouse brain. The GSE152919 dataset was originally created by using the Illumina HiSeq 4000 (Mus musculus). The KEGG and GO analyses suggested that biological processes "PPAR signaling", "Hippo signaling", and "Hypertrophic cardiomyopathy (HCM)" are mostly affected in the knockout of REV-ERB. Furthermore, we identified a number of genes according to the PPI network including NPAS2, CRY2, BMAL1, and CRY1 which were involved in the lack of REV-ERB in the brain. Therefore, our study provides further insights into the study of circadian clocks.


2021 ◽  
Vol 22 (19) ◽  
pp. 10665
Author(s):  
Wei Mao ◽  
Gaofeng Xiong ◽  
Yuanyuan Wu ◽  
Chi Wang ◽  
Daret St. Clair ◽  
...  

Breast cancer development is associated with macrophage infiltration and differentiation in the tumor microenvironment. Our previous study highlights the crucial function of reactive oxygen species (ROS) in enhancing macrophage infiltration during the disruption of mammary tissue polarity. However, the regulation of ROS and ROS-associated macrophage infiltration in breast cancer has not been fully determined. Previous studies identified retinoid orphan nuclear receptor alpha (RORα) as a potential tumor suppressor in human breast cancer. In the present study, we showed that retinoid orphan nuclear receptor alpha (RORα) significantly decreased ROS levels and inhibited ROS-mediated cytokine expression in breast cancer cells. RORα expression in mammary epithelial cells inhibited macrophage infiltration by repressing ROS generation in the co-culture assay. Using gene co-expression and chromatin immunoprecipitation (ChIP) analyses, we identified complex I subunits NDUFS6 and NDUFA11 as RORα targets that mediated its function in suppressing superoxide generation in mitochondria. Notably, the expression of RORα in 4T1 cells significantly inhibited cancer metastasis, reduced macrophage accumulation, and enhanced M1-like macrophage differentiation in tumor tissue. In addition, reduced RORα expression in breast cancer tissue was associated with an increased incidence of cancer metastasis. These results provide additional insights into cancer-associated inflammation, and identify RORα as a potential target to suppress ROS-induced mammary tumor progression.


2021 ◽  
Vol 2 (Supplement_1) ◽  
pp. A41-A41
Author(s):  
F Karuga ◽  
S Turkiewicz ◽  
M Ditmer ◽  
M Sochal ◽  
P Białasiewicz ◽  
...  

Abstract Circadian clocks are endogenous coordinators of 24-hour behavioral and molecular rhythms, which disruption may be caused by obstructive sleep apnea (OSA). It is composed of a set of genes, function as activators (CLOCK, BMAL) or repressors (PER, CRY). Neuronal PAS Domain Protein 2 (NPAS2) can substitute CLOCK in its function. Orphan nuclear receptor (Rev-Erb-α) is another protein supporting the CLOCK-BMAL1 complex, forming the loop which helps to regulate their expression. There are studies suggesting the significant influence of circadian disruption mediated via NPAS2 and Rev-Erb-α on DM2 development. The aim of the study was to determine the role of NPAS2 and Rev-Erb-α in DM2 for OSA patients. All participants underwent polysomnography (PSG) examination. Based on apnea-hypopnea index accompanied by clinical data the recruited individuals (n=40) were assigned to one from 3 groups: OSA (severe OSA, no DM2; n=17), DM2 (severe OSA + DM2; n=7) and control group (no OSA, no DM2; n=16). Serum protein levels of Rev-Erb-α and NPAS2 were assessed with ELISA immunoassay. Analysis between the groups revealed the statistically significant difference only in NPAS2 protein level (p=0.037). Further post-hoc analysis revealed significant differences between OSA and the control group (p=0.017). Moreover, a statistically significant correlation between AHI and NPAS2 serum protein level was observed (r=-0.478, p=0.002). NPAS2 protein levels are associated with a number of apneas and hypopneas during the REM phase of sleep and might have a significant role in the development of OSA complications. However, further studies are needed to understand its role.


2021 ◽  
Vol 99 (5) ◽  
pp. 570-577
Author(s):  
Ying Wang ◽  
Chunjia Li ◽  
Yanzhuo Zhang ◽  
Xiaojun Zha ◽  
Hongbing Zhang ◽  
...  

Tuberous sclerosis complex (TSC), an inherited neurocutaneous disease, is caused by mutations in either the TSC1 or TSC2 gene. This genetic disorder is characterized by the growth of benign tumors in the brain, kidneys, and other organs. As a member of the orphan nuclear receptor family, nuclear receptor related 1 (Nurr1) plays a vital role in some neuropathological diseases and several types of benign or malignant tumors. Here, we explored the potential regulatory role of TSC1/2 signaling in Nurr1 and the effect of Nurr1 in TSC-related tumors. We found that Nurr1 expression was drastically decreased by the disruption of the TSC1/2 complex in Tsc2-null cells, genetically modified mouse models of TSC, cortical tubers of TSC patients, and kidney tumor tissue obtained from a TSC patient. Deficient TSC1/2 complex downregulated Nurr1 expression in an mTOR-dependent manner. Moreover, hyperactivation of mTOR reduced Nurr1 expression via suppression of autophagy. In addition, Nurr1 overexpression inhibited cell proliferation and suppressed cell cycle progression. Therefore, TSC/mTOR/autophagy/Nurr1 signaling is partially responsible for the tumorigenesis of TSC. Taken together, Nurr1 may be a novel therapeutic target for TSC-associated tumors, and Nurr1 agonists or reagents that induce Nurr1 expression may be used for the treatment of TSC.


Author(s):  
Ji Min Lee ◽  
Hyunkyung Kim ◽  
Sung Hee Baek

AbstractRetinoic acid receptor-related orphan receptor-α (RORα) is a member of the orphan nuclear receptor family and functions as a transcriptional activator in response to circadian changes. Circadian rhythms are complex cellular mechanisms regulating diverse metabolic, inflammatory, and tumorigenic gene expression pathways that govern cyclic cellular physiology. Disruption of circadian regulators, including RORα, plays a critical role in tumorigenesis and facilitates the development of inflammatory hallmarks. Although RORα contributes to overall fitness among anticancer, anti-inflammatory, lipid homeostasis, and circadian clock mechanisms, the molecular mechanisms underlying the mode of transcriptional regulation by RORα remain unclear. Nonetheless, RORα has important implications for pharmacological prevention of cancer, inflammation, and metabolic diseases, and understanding context-dependent RORα regulation will provide an innovative approach for unraveling the functional link between cancer metabolism and rhythm changes.


Sign in / Sign up

Export Citation Format

Share Document