scholarly journals The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae.

1993 ◽  
Vol 13 (9) ◽  
pp. 5377-5382 ◽  
Author(s):  
B Datta ◽  
A M Weiner

U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay.

1993 ◽  
Vol 13 (9) ◽  
pp. 5377-5382
Author(s):  
B Datta ◽  
A M Weiner

U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay.


1992 ◽  
Vol 12 (9) ◽  
pp. 3939-3947 ◽  
Author(s):  
S Blanton ◽  
A Srinivasan ◽  
B C Rymond

An essential pre-mRNA splicing factor, the product of the PRP38 gene, has been genetically identified in a screen of temperature-sensitive mutants of Saccharomyces cerevisiae. Shifting temperature-sensitive prp38 cultures from 23 to 37 degrees C prevents the first cleavage-ligation event in the excision of introns from mRNA precursors. In vitro splicing inactivation and complementation studies suggest that the PRP38-encoded factor functions, at least in part, after stable splicing complex formation. The PRP38 locus contains a 726-bp open reading frame coding for an acidic 28-kDa polypeptide (PRP38). While PRP38 lacks obvious structural similarity to previously defined splicing factors, heat inactivation of PRP38, PRP19, or any of the known U6 (or U4/U6) small nuclear ribonucleoprotein-associating proteins (i.e., PRP3, PRP4, PRP6, and PRP24) leads to a common, unexpected consequence: intracellular U6 small nuclear RNA (snRNA) levels decrease as splicing activity is lost. Curiously, U4 snRNA, normally extensively base paired with U6 snRNA, persists in the virtual absence of U6 snRNA.


1992 ◽  
Vol 12 (9) ◽  
pp. 3939-3947
Author(s):  
S Blanton ◽  
A Srinivasan ◽  
B C Rymond

An essential pre-mRNA splicing factor, the product of the PRP38 gene, has been genetically identified in a screen of temperature-sensitive mutants of Saccharomyces cerevisiae. Shifting temperature-sensitive prp38 cultures from 23 to 37 degrees C prevents the first cleavage-ligation event in the excision of introns from mRNA precursors. In vitro splicing inactivation and complementation studies suggest that the PRP38-encoded factor functions, at least in part, after stable splicing complex formation. The PRP38 locus contains a 726-bp open reading frame coding for an acidic 28-kDa polypeptide (PRP38). While PRP38 lacks obvious structural similarity to previously defined splicing factors, heat inactivation of PRP38, PRP19, or any of the known U6 (or U4/U6) small nuclear ribonucleoprotein-associating proteins (i.e., PRP3, PRP4, PRP6, and PRP24) leads to a common, unexpected consequence: intracellular U6 small nuclear RNA (snRNA) levels decrease as splicing activity is lost. Curiously, U4 snRNA, normally extensively base paired with U6 snRNA, persists in the virtual absence of U6 snRNA.


1993 ◽  
Vol 13 (9) ◽  
pp. 5613-5619
Author(s):  
Y Takahashi ◽  
S Urushiyama ◽  
T Tani ◽  
Y Ohshima

Splicing an mRNA precursor requires multiple factors involving five small nuclear RNA (snRNA) species called U1, U2, U4, U5, and U6. The presence of mRNA-type introns in the U6 snRNA genes of some yeasts led to the hypothesis that U6 snRNA may play a catalytic role in pre-mRNA splicing and that the U6 introns occurred through reverse splicing of an intron from an mRNA precursor into a catalytic site of U6 snRNA. We characterized the U2 snRNA gene of the yeast Rhodotorula hasegawae, which has four mRNA-type introns in the U6 snRNA gene, and found an mRNA-type intron of 60 bp. The intron of the U2 snRNA gene is present in the highly conserved region immediately downstream of the branch site recognition domain. Interestingly, we found that this region can form a novel base pairing with U6 snRNA. We discuss the possible implications of these findings for the mechanisms of intron acquisition and for the role of U2 snRNA in pre-mRNA splicing.


1990 ◽  
Vol 10 (3) ◽  
pp. 939-946 ◽  
Author(s):  
R Singh ◽  
S Gupta ◽  
R Reddy

The cap structure of U6 small nuclear RNA (snRNA) is gamma-monomethyl phosphate and is distinct from other known RNA cap structures (R. Singh and R. Reddy, Proc. Natl. Acad. Sci. USA 86:8280-8283, 1989). Here we show that the information for capping the U6 snRNA in vitro is within the initial 25 nucleotides of the U6 RNA. The capping determinant in mammalian U6 snRNA is a bipartite element--a phylogenetically conserved stem-loop structure and an AUAUAC sequence, or a part thereof, following this stem-loop. Wild-type capping efficiency was obtained when the AUAUAC motif immediately followed the stem-loop and when the gamma-phosphate of the initiation nucleotide was in close proximity to the capping determinant. Incorporation of a synthetic stem-loop followed by an AUAUAC sequence is sufficient to covert a noncapped heterologous transcript into a capped transcript. Transcripts with the initial 32 nucleotides of Saccharomyces cerevisiae U6 snRNA are accurately capped in HeLa cell extract, indicating that capping machinery from HeLa cells can cap U6 snRNA from an evolutionarily distant eucaryote. The U6-snRNA-specific capping is unusual in that it is RNA sequence dependent, while the capping of mRNAs and other U snRNAs is tightly coupled to transcription and is independent of the RNA sequence.


1993 ◽  
Vol 13 (9) ◽  
pp. 5613-5619 ◽  
Author(s):  
Y Takahashi ◽  
S Urushiyama ◽  
T Tani ◽  
Y Ohshima

Splicing an mRNA precursor requires multiple factors involving five small nuclear RNA (snRNA) species called U1, U2, U4, U5, and U6. The presence of mRNA-type introns in the U6 snRNA genes of some yeasts led to the hypothesis that U6 snRNA may play a catalytic role in pre-mRNA splicing and that the U6 introns occurred through reverse splicing of an intron from an mRNA precursor into a catalytic site of U6 snRNA. We characterized the U2 snRNA gene of the yeast Rhodotorula hasegawae, which has four mRNA-type introns in the U6 snRNA gene, and found an mRNA-type intron of 60 bp. The intron of the U2 snRNA gene is present in the highly conserved region immediately downstream of the branch site recognition domain. Interestingly, we found that this region can form a novel base pairing with U6 snRNA. We discuss the possible implications of these findings for the mechanisms of intron acquisition and for the role of U2 snRNA in pre-mRNA splicing.


2000 ◽  
Vol 11 (7) ◽  
pp. 2419-2428 ◽  
Author(s):  
Thilo Sascha Lange ◽  
Susan A. Gerbi

Recent studies on the 2′-O-methylation and pseudouridylation of U6 small nuclear RNA (snRNA) hypothesize that these posttranscriptional modifications might occur in the nucleolus. In this report, we present direct evidence for the nucleolar localization of U6 snRNA and analyze the kinetics of U6 nucleolar localization after injection of in vitro transcribed fluorescein-labeled transcripts into Xenopus laevis oocytes. In contrast to U3 small nucleolar RNA (snoRNA) which developed strong nucleolar labeling over 4 h and maintained strong nucleolar signals through 24 h, U6 snRNA localized to nucleoli immediately after injection, but nucleolar staining decreased after 4 h. By 24 h after injection of U6 snRNA, only weak nucleolar signals were observed. Unlike the time-dependent profile of strong nucleolar localization of U6 snRNA or U3 snoRNA, injection of fluorescein-labeled U2 snRNA gave weak nucleolar staining at all times throughout a 24-h period; U2 snRNA modifications are believed to occur outside of the nucleolus. The notion that the decrease of U6 signals over time was due to its trafficking out of nucleoli and not to transcript degradation was supported by the demonstration of U6 snRNA stability over time. Therefore, in contrast to snoRNAs like U3, U6 snRNA transiently passes through nucleoli.


1990 ◽  
Vol 10 (3) ◽  
pp. 1217-1225 ◽  
Author(s):  
Y Xu ◽  
S Petersen-Bjørn ◽  
J D Friesen

We have combined oligonucleotide-directed RNase H degradation and immunoprecipitation in a study of the association of the Saccharomyces cerevisiae PRP4 protein with the U4-U6 complex. We have found that three oligonucleotides were able to direct nearly to completion the RNase H-specific cleavage of the target RNA molecules as they exist in splicing extracts. Immunoprecipitation of the degradation products with PRP4 antibody showed that the 5' portion of U4 small nuclear RNA (snRNA) and the 3' portion of U6 snRNA coimmunoprecipitated with the PRP4 protein. Micrococcal nuclease protection experiments confirmed further that the 5' portion and 3' end of U4 snRNA were very resistant to nuclease digestion, whereas the 3' portion of U6 snRNA was protected to only a very small extent. We conclude that the PRP4 protein of S. cerevisiae is associated primarily with the 5' portion of U4 snRNA in the U4-U6 small nuclear ribonucleoprotein (snRNP).


1990 ◽  
Vol 10 (3) ◽  
pp. 1217-1225
Author(s):  
Y Xu ◽  
S Petersen-Bjørn ◽  
J D Friesen

We have combined oligonucleotide-directed RNase H degradation and immunoprecipitation in a study of the association of the Saccharomyces cerevisiae PRP4 protein with the U4-U6 complex. We have found that three oligonucleotides were able to direct nearly to completion the RNase H-specific cleavage of the target RNA molecules as they exist in splicing extracts. Immunoprecipitation of the degradation products with PRP4 antibody showed that the 5' portion of U4 small nuclear RNA (snRNA) and the 3' portion of U6 snRNA coimmunoprecipitated with the PRP4 protein. Micrococcal nuclease protection experiments confirmed further that the 5' portion and 3' end of U4 snRNA were very resistant to nuclease digestion, whereas the 3' portion of U6 snRNA was protected to only a very small extent. We conclude that the PRP4 protein of S. cerevisiae is associated primarily with the 5' portion of U4 snRNA in the U4-U6 small nuclear ribonucleoprotein (snRNP).


2010 ◽  
Vol 30 (23) ◽  
pp. 5502-5513 ◽  
Author(s):  
Ju Huck Lee ◽  
Gang Cai ◽  
Aswini K. Panigrahi ◽  
Star Dunham-Ems ◽  
Tu N. Nguyen ◽  
...  

ABSTRACT Genome annotation suggested that early-diverged kinetoplastids possess a reduced set of basal transcription factors. More recent work, however, on the lethal parasite Trypanosoma brucei identified extremely divergent orthologs of TBP, TFIIA, TFIIB, and TFIIH which, together with the small nuclear RNA-activating protein complex, form a transcription preinitiation complex (PIC) at the spliced leader (SL) RNA gene (SLRNA) promoter. The SL RNA is a small nuclear RNA and a trans splicing substrate for the maturation of all pre-mRNAs which is metabolized continuously to sustain gene expression. Here, we identified and biochemically characterized a novel TFIIH-associated protein complex in T. brucei (Med-T) consisting of nine subunits whose amino acid sequences are conserved only among kinetoplastid organisms. Functional analyses in vivo and in vitro demonstrated that the complex is essential for cell viability, SLRNA transcription, and PIC integrity. Molecular structure analysis of purified Med-T and Med-T/TFIIH complexes by electron microscopy revealed that Med-T corresponds to the mediator head module of higher eukaryotes. These data therefore show that mediator is a basal factor for small nuclear SL RNA gene transcription in trypanosomes and that the basal transcription function of mediator head is a characteristic feature of eukaryotes which developed early in their evolution.


Sign in / Sign up

Export Citation Format

Share Document