nucleolar localization
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 29)

H-INDEX

45
(FIVE YEARS 3)

Author(s):  
David Dilworth ◽  
Ronan P. Hanley ◽  
Renato Ferreira de Freitas ◽  
Abdellah Allali-Hassani ◽  
Mengqi Zhou ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianwei Zhou ◽  
Yonghui Qiu ◽  
Ning Zhu ◽  
Linyi Zhou ◽  
Beining Dai ◽  
...  

Porcine circovirus type 4 (PCV4) is an emerging etiological agent which was first detected in 2019. The nucleolar localization signal (NoLS) of PCV4 Cap protein and its binding host cellular proteins are still not elucidated. In the present study, we discovered a distinct novel NoLS of PCV4 Cap, which bound to the nucleolar phosphoprotein nucleophosmin-1 (NPM1). The NoLS of PCV4 Cap and serine-48 residue at the N-terminal oligomerization domain of NPM1 were necessary for PCV4 Cap/NPM1 interaction. Furthermore, the charge property of serine residue at position 48 of the NPM1 was crucial for its oligomerization and interaction with PCV4 Cap. In summary, our findings show for the first time that the PCV4 Cap NoLS and the NPM1 oligomerization determine the interaction of Cap/NPM1.


2021 ◽  
Author(s):  
Margarita A. Kurnaeva ◽  
Arthur O. Zalevsky ◽  
Eugene A. Arifulin ◽  
Olga M. Lisitsyna ◽  
Anna V. Tvorogova ◽  
...  

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, to reduce protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of NLS and NoLS integration into the basic domain of HIV-1 Tat ( 49 RKKRRQRRR 57 ), and found that these two supplementary functions (i.e., function of NLS and NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Tetsuaki Miyake ◽  
John C. McDermott

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256282
Author(s):  
Hung-Wei Lin ◽  
Jin-Yu Lee ◽  
Nai-Lin Chou ◽  
Ting-Wei Shih ◽  
Mau-Sun Chang

Human PUF-A/PUM3 is a RNA and DNA binding protein participating in the nucleolar processing of 7S to 5.8S rRNA. The nucleolar localization of PUF-A redistributes to the nucleoplasm upon the exposure to genotoxic agents in cells. However, little is known regarding the roles of PUF-A in tumor progression. Phosphoprotein database analysis revealed that Y259 phosphorylation of PUF-A is the most prevalent residue modified. Here, we reported the importance of PUF-A’s phosphorylation on Y259 in tumorigenesis. PUF-A gene was knocked out by the Crispr/Cas9 method in human cervix epithelial HeLa cells. Loss of PUF-A in HeLa cells resulted in reduced clonogenic and lower transwell invasion capacity. Introduction of PUF-AY259F to PUF-A deficient HeLa cells was unable to restore colony formation. In addition, the unphosphorylated mutant of PUF-A, PUF-AY259F, attenuated PUF-A protein stability. Our results suggest the important role of Y259 phosphorylation of PUF-A in cell proliferation.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3457
Author(s):  
Claudia Tregnago ◽  
Maddalena Benetton ◽  
Davide Padrin ◽  
Katia Polato ◽  
Giulia Borella ◽  
...  

Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, predominantly located in the nucleolus, that regulates a multiplicity of different biological processes. NPM1 localization in the cell is finely tuned by specific signal motifs, with two tryptophan residues (Trp) being essential for the nucleolar localization. In acute myeloid leukemia (AML), several NPM1 mutations have been reported, all resulting in cytoplasmic delocalization, but the putative biological and clinical significance of different variants are still debated. We explored HOXA and HOXB gene expression profile in AML patients and found a differential expression between NPM1 mutations inducing the loss of two (A-like) Trp residues and those determining the loss of one Trp residue (non-A-like). We thus expressed NPM1 A-like- or non-A-like-mutated vectors in AML cell lines finding that NPM1 partially remained in the nucleolus in the non-A-like NPM1-mutated cells. As a result, only in A-like-mutated cells we detected HOXA5, HOXA10, and HOXB5 hyper-expression and p14ARF/p21/p53 pathway deregulation, leading to reduced sensitivity to the treatment with either chemotherapy or Venetoclax, as compared to non-A-like cells. Overall, we identified that the NPM1 mutational status mediates crucial biological characteristics of AML cells, providing the basis for further sub-classification and, potentially, management of this subgroup of patients.


2021 ◽  
Author(s):  
David Dilworth ◽  
Ronan P. Hanley ◽  
Renato Ferreira de Freitas ◽  
Abdellah Allali-Hassani ◽  
Mengqi Zhou ◽  
...  

AbstractNSD2 is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36me2), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two PWWP and five PHD domains believed to serve as chromatin reading modules, but their exact function in the regulation of NSD2 activity remains underexplored. Here we report a first-in-class chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 binds potently (Kd of 91 ± 8 nM) to PWWP1, antagonizes its interaction with nucleosomal H3K36me2, and selectively engages endogenous NSD2 in cells. Crystal structures show that UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1 which is juxtaposed to the DNA-binding surface. In cells, UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 as a result of translocations prevalent in multiple myeloma. Mutation of other NSD2 chromatin reader domains also increases NSD2 nucleolar localization, and enhances the effect of UNC6934. Finally we identified two C-terminal nucleolar localization sequences in NSD2 that appear to drive nucleolar accumulation when one or more chromatin reader domains are disabled. These data support a model in which NSD2 chromatin engagement is achieved in a cooperative manner and subcellular localization is controlled by multiple competitive structural determinants. This chemical probe and the accompanying negative control, UNC7145, will be useful tools in defining NSD2 biology.


Author(s):  
D.E. MacNeil ◽  
P. Lambert-Lanteigne ◽  
J. Qin ◽  
F. McManus ◽  
E. Bonneil ◽  
...  

The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important though incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal Nuclear/Nucleolar Localization Signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wildtype dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3-fusion construct can drive nuclear accumulation of this variant, and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jianwei Zhou ◽  
Juan Li ◽  
Haimin Li ◽  
Ying Zhang ◽  
Weiren Dong ◽  
...  

AbstractThe transport of circovirus capsid protein into nucleus is essential for viral replication in infected cell. However, the role of nucleolar shuttle proteins during porcine circovirus 3 capsid protein (PCV3 Cap) import is still not understood. Here, we report a previously unidentified nucleolar localization signal (NoLS) of PCV3 Cap, which hijacks the nucleolar phosphoprotein nucleophosmin-1 (NPM1) to facilitate nucleolar localization of PCV3 Cap. The NoLS of PCV3 Cap and serine-48 residue of N-terminal oligomerization domain of NPM1 are essential for PCV3 Cap/NPM1 interaction. In addition, charge property of serine-48 residue of NPM1 is critical for nucleolar localization and interaction with PCV3 Cap. Taken together, our findings demonstrate for the first time that NPM1 interacts with PCV3 Cap and is responsible for its nucleolar localization.


Sign in / Sign up

Export Citation Format

Share Document