scholarly journals Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK.

1997 ◽  
Vol 17 (11) ◽  
pp. 6274-6282 ◽  
Author(s):  
J L Swantek ◽  
M H Cobb ◽  
T D Geppert

The adverse effects of lipopolysaccharide (LPS) are mediated primarily by tumor necrosis factor alpha (TNF-alpha). TNF-alpha production by LPS-stimulated macrophages is regulated at the levels of both transcription and translation. It has previously been shown that several mitogen-activated protein kinases (MAPKs) are activated in response to LPS. We set out to determine which MAPK signaling pathways are activated in our system and which MAPK pathways are required for TNF-alpha gene transcription or TNF-alpha mRNA translation. We confirm activation of the MAPK family members extracellular-signal-regulated kinases 1 and 2 (ERK1 and ERK2), p38, and Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), as well as activation of the immediate upstream MAPK activators MAPK/ERK kinases 1 and 4 (MEK1 and MEK4). We demonstrate that LPS also activates MEK2, MEK3, and MEK6. Furthermore, we demonstrate that dexamethasone, which inhibits the production of cytokines, including TNF-alpha, significantly inhibits LPS induction of JNK/SAPK activity but not that of p38, ERK1 and ERK2, or MEK3, MEK4, or MEK6. Dexamethasone also blocks the sorbitol but not anisomycin stimulation of JNK/SAPK activity. A kinase-defective mutant of SAPKbeta, SAPKbeta K-A, blocked translation of TNF-alpha, as determined by using a TNF-alpha translational reporting system. Finally, overexpression of wild-type SAPKbeta was able to overcome the dexamethasone-induced block of TNF-alpha translation. These data confirm that three MAPK family members and their upstream activators are stimulated by LPS and demonstrate that JNK/SAPK is required for LPS-induced translation of TNF-alpha mRNA. A novel mechanism by which dexamethasone inhibits translation of TNF-alpha is also revealed.

1990 ◽  
Vol 10 (4) ◽  
pp. 1498-1506 ◽  
Author(s):  
M A Collart ◽  
P Baeuerle ◽  
P Vassalli

This study characterizes the interaction of murine macrophage nuclear proteins with the tumor necrosis factor alpha (TNF-alpha) promoter. Gel retardation and methylation interference assays showed that stimulation of TNF-alpha gene transcription in peritoneal exudate macrophages was accompanied by induction of DNA-binding proteins that recognized with different affinities four elements related to the kappa B consensus motif and a Y-box motif. We suggest that the basal level of TNF-alpha expression in macrophages is due to the binding of a constitutive form of NF-kappa B, present at low levels in nuclei from resting thioglycolate exudate peritoneal macrophages, to some if not all of the kappa B motifs; we postulate that this constitutive form contains only the 50-kilodalton (kDa) DNA-binding protein subunits of NF-kappa B, not the 65-kDa protein subunits (P. Baeuerle and D. Baltimore, Genes Dev. 3:1689-1698, 1989). Agents such as glucocorticoids, which decrease TNF-alpha transcription, diminished the basal level of nuclear NF-kappa B. Stimulation of Stimulation of TNF-alpha transcription in macrophages by lipopolysaccharide, gamma interferon, or cycloheximide led to an increased content of nuclear NF-kappa B. This induced factor represents a different form of NF-kappa B, since it generated protein-DNA complexes of slower mobility; we propose that this induced form of NF-kappa B contains both the 50- and 65-kDa protein subunits, the latter ones being necessary to bind NF-kappa B to its cytoplasmic inhibitor in uninduced cells (Baeuerle and Baltimore, Genes Dev., 1989). In resting cells, this inducible form of NF-kappa B was indeed detectable in the cytosol after deoxycholate treatment.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 172 (6) ◽  
pp. 1749-1756 ◽  
Author(s):  
A E Postlethwaite ◽  
J M Seyer

Macrophages are a major source of fibrogenic factors that promote healing of injured tissue. The recruitment of fibroblasts to sites of tissue injury is a prerequisite for optimal repair of tissue damage. In the present study, human recombinant tumor necrosis factor alpha (hrTNF-alpha), a major macrophage-derived cytokine, was demonstrated to be a potent fibroblast chemoattractant, inducing migration at picomolar concentrations. Anti-hrTNF-alpha monoclonal antibody neutralized most of the fibroblast chemotactic activity generated during short-term culture of human peripheral blood monocytes stimulated with bacterial lipopolysaccharide, suggesting that TNF-alpha is a major monocyte-derived fibroblast chemoattractant. The portion of the human TNF-alpha molecule responsible for its chemotactic stimulation of fibroblasts appears to reside in residues 31-68. This region is highly conserved between TNF-alpha and lymphotoxin. This peptide is not only itself chemotactic but is also able to block the chemotactic response of fibroblasts to hrTNF-alpha and vice versa, suggesting that they each mediate fibroblast migration through similar mechanisms. These data further underscore the potential importance of TNF-alpha in modulating a variety of fibroblast functions, including chemotaxis and synthesis of collagen, glycosaminoglycans, interleukin 1 alpha (IL-1 alpha) and -beta, human histocompatibility leukocyte antigen A and B antigens, collagenase, prostaglandin E2, and IL-6.


1990 ◽  
Vol 10 (4) ◽  
pp. 1498-1506
Author(s):  
M A Collart ◽  
P Baeuerle ◽  
P Vassalli

This study characterizes the interaction of murine macrophage nuclear proteins with the tumor necrosis factor alpha (TNF-alpha) promoter. Gel retardation and methylation interference assays showed that stimulation of TNF-alpha gene transcription in peritoneal exudate macrophages was accompanied by induction of DNA-binding proteins that recognized with different affinities four elements related to the kappa B consensus motif and a Y-box motif. We suggest that the basal level of TNF-alpha expression in macrophages is due to the binding of a constitutive form of NF-kappa B, present at low levels in nuclei from resting thioglycolate exudate peritoneal macrophages, to some if not all of the kappa B motifs; we postulate that this constitutive form contains only the 50-kilodalton (kDa) DNA-binding protein subunits of NF-kappa B, not the 65-kDa protein subunits (P. Baeuerle and D. Baltimore, Genes Dev. 3:1689-1698, 1989). Agents such as glucocorticoids, which decrease TNF-alpha transcription, diminished the basal level of nuclear NF-kappa B. Stimulation of Stimulation of TNF-alpha transcription in macrophages by lipopolysaccharide, gamma interferon, or cycloheximide led to an increased content of nuclear NF-kappa B. This induced factor represents a different form of NF-kappa B, since it generated protein-DNA complexes of slower mobility; we propose that this induced form of NF-kappa B contains both the 50- and 65-kDa protein subunits, the latter ones being necessary to bind NF-kappa B to its cytoplasmic inhibitor in uninduced cells (Baeuerle and Baltimore, Genes Dev., 1989). In resting cells, this inducible form of NF-kappa B was indeed detectable in the cytosol after deoxycholate treatment.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 14 (10) ◽  
pp. 6561-6569
Author(s):  
L Klampfer ◽  
T H Lee ◽  
W Hsu ◽  
J Vilcek ◽  
S Chen-Kiang

Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) activate transcription of the TSG-6 gene in normal human fibroblasts through a promoter region (-165 to -58) that encompasses an AP-1 and a NF-IL6 site. We show by deletion analysis and substitution mutagenesis that both sites are necessary for activation by TNF-alpha. Activation by IL-1 requires the NF-IL6 site and is enhanced by the AP-1 site. These results suggest that the NF-IL6 and AP-1 family transcription factors functionally cooperate to mediate TNF-alpha and IL-1 signals. Consistent with this possibility, IL-1 and TNF-alpha markedly increase the binding of Fos and Jun to the AP-1 site, and NF-IL6 activates the native TSG-6 promoter. Activation by NF-IL6 requires an intact NF-IL6 site and is modulated by the ratio of activator to inhibitor NF-IL6 isoforms that are translated from different in-frame AUGs. However, the inhibitor isoform can also bind to the AP-1 site and repress AP-1 site-mediated transcription. The finding that the inhibitor isoform antagonizes activation of the native TSG-6 promoter by IL-1 and TNF-alpha suggests that NF-IL6 has a physiologic role in these cytokine responses. Thus, the functionally distinct NF-IL6 isoforms cooperate with Fos and Jun to positively and negatively regulate the native TSG-6 promoter by TNF-alpha and IL-1.


1993 ◽  
Vol 264 (1) ◽  
pp. L7-L14 ◽  
Author(s):  
T. J. Ferro ◽  
D. M. Parker ◽  
L. M. Commins ◽  
P. G. Phillips ◽  
A. Johnson

We investigated the hypothesis that tumor necrosis factor-alpha (TNF) activates pulmonary endothelial protein kinase C (PKC). Confluent bovine pulmonary artery endothelial monolayers were exposed to recombinant human TNF, and the translocation of PKC, an indicator of enzyme activation, was studied using both slot immunoblotting and immunofluorescence. For slot immunoblot analysis, membrane and cytosol lysate fractions were prepared, and PKC antigen was assessed using MC5 monoclonal anti-PKC antibody. TNF (1,000 U/ml for 15 min) induced translocation of PKC into the membrane. Immunofluorescence analysis with the MC5 antibody was also used. Monolayers treated with culture medium showed diffuse cytoplasmic fluorescence. In contrast, treatment with either TNF (1,000 U/ml for 15 min) or 1,2-dioctanoylglycerol (4 x 10(-5) M for 5 min), a diacylglycerol that activates PKC, resulted in translocation of fluorescence to the cell periphery; fine, punctate PKC-associated fluorescence was localized to the margins of cells. The TNF-induced translocation of PKC was inhibited using either IP-300 polyclonal anti-TNF antibody (indicating that the TNF effect was not due to the vehicle or contaminating endotoxin) or calphostin C (10(-6) M for 15 min), which inhibits PKC activation by interacting with the regulatory diacylglycerol-binding domain. TNF treatment had no effect on either the content of PKC, or of total protein, in the membrane + cytosol, and cycloheximide (40 microM for 5 min) did not alter the translocation of PKC induced by TNF; these results indicate that the effect of TNF on PKC translocation was related to neither de novo membrane synthesis of PKC (as opposed to translocation per se) nor nonspecific augmentation of protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 21 (6) ◽  
pp. 638-640 ◽  
Author(s):  
Masaaki ISHIKAWA ◽  
Shu-ichi KANNO ◽  
Motoaki TAKAYANAGI ◽  
Yoshio TAKAYANAGI ◽  
Ken-ichi SASAKI

Sign in / Sign up

Export Citation Format

Share Document