scholarly journals Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants.

1997 ◽  
Vol 17 (5) ◽  
pp. 2859-2865 ◽  
Author(s):  
H T Tran ◽  
J D Keen ◽  
M Kricker ◽  
M A Resnick ◽  
D A Gordenin

Homonucleotide runs in coding sequences are hot spots for frameshift mutations and potential sources of genetic changes leading to cancer in humans having a mismatch repair defect. We examined frameshift mutations in homonucleotide runs of deoxyadenosines ranging from 4 to 14 bases at the same position in the LYS2 gene of the yeast Saccharomyces cerevisiae. In the msh2 mismatch repair mutant, runs of 9 to 14 deoxyadenosines are 1,700-fold to 51,000-fold, respectively, more mutable for single-nucleotide deletions than are runs of 4 deoxyadenosines. These frameshift mutations can account for up to 99% of all forward mutations inactivating the 4-kb LYS2 gene. Based on results with single and double mutations of the POL2 and MSH2 genes, both DNA polymerase epsilon proofreading and mismatch repair are efficient for short runs while only the mismatch repair system prevents frameshift mutations in runs of > or = 8 nucleotides. Therefore, coding sequences containing long homonucleotide runs are likely to be at risk for mutational inactivation in cells lacking mismatch repair capability.

2009 ◽  
Vol 29 (19) ◽  
pp. 5316-5326 ◽  
Author(s):  
Sarah V. Mudrak ◽  
Caroline Welz-Voegele ◽  
Sue Jinks-Robertson

ABSTRACT Reactive oxygen species are ubiquitous mutagens that have been linked to both disease and aging. The most studied oxidative lesion is 7,8-dihydro-8-oxoguanine (GO), which is often miscoded during DNA replication, resulting specifically in GC → TA transversions. In yeast, the mismatch repair (MMR) system repairs GO·A mismatches generated during DNA replication, and the polymerase η (Polη) translesion synthesis DNA polymerase additionally promotes error-free bypass of GO lesions. It has been suggested that Polη limits GO-associated mutagenesis exclusively through its participation in the filling of MMR-generated gaps that contain GO lesions. In the experiments reported here, the SUP4-o forward-mutation assay was used to monitor GC → TA mutation rates in strains defective in MMR (Msh2 or Msh6) and/or in Polη activity. The results clearly demonstrate that Polη can function independently of the MMR system to prevent GO-associated mutations, presumably through preferential insertion of cytosine opposite replication-blocking GO lesions. Furthermore, the Polη-dependent bypass of GO lesions is more efficient on the lagging strand of replication and requires an interaction with proliferating cell nuclear antigen. These studies establish a new paradigm for the prevention of GO-associated mutagenesis in eukaryotes.


1999 ◽  
Vol 181 (2) ◽  
pp. 477-482 ◽  
Author(s):  
Malgorzata Bzymek ◽  
Catherine J. Saveson ◽  
Vladimir V. Feschenko ◽  
Susan T. Lovett

ABSTRACT Misalignment of repeated sequences during DNA replication can lead to deletions or duplications in genomic DNA. In Escherichia coli, such genetic rearrangements can occur at high frequencies, independent of the RecA-homologous recombination protein, and are sometimes associated with sister chromosome exchange (SCE). Two mechanisms for RecA-independent genetic rearrangements have been proposed: simple replication misalignment of the nascent strand and its template and SCE-associated misalignment involving both nascent strands. We examined the influence of the 3′ exonuclease of DNA polymerase III and exonuclease I on deletion via these mechanisms in vivo. Because mutations in these exonucleases stimulate tandem repeat deletion, we conclude that displaced 3′ ends are a common intermediate in both mechanisms of slipped misalignments. Our results also confirm the notion that two distinct mechanisms contribute to slipped misalignments: simple replication misalignment events are sensitive to DNA polymerase III exonuclease, whereas SCE-associated events are sensitive to exonuclease I. If heterologies are present between repeated sequences, the mismatch repair system dependent on MutS and MutH aborts potential deletion events via both mechanisms. Our results suggest that simple slipped misalignment and SCE-associated misalignment intermediates are similarly susceptible to destruction by the mismatch repair system.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1539-1545
Author(s):  
Christiane-Gabrielle Gendrel ◽  
Marie Dutreix

Abstract Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, whereas failure to repair mismatches results in postmeiotic segregation (PMS). By examining the conversion and PMS in yeast strains deficient in various MMR genes and heterozygous for large inserts (107 bp) with either a mixed sequence or a 39 (CA/TG) repetitive microsatellite sequence, we demonstrate that: (1) the inhibition of conversion by large inserts depends upon a complex containing both Msh2 and Pms1 proteins; (2) conversion is not inhibited if the single-stranded DNA loop in the heteroduplex is the microsatellite sequence; and (3) large heteroduplex loops with random sequence or repetitive sequence might be repaired by two complexes, containing either Msh2 or Pms1. Our results suggest that inhibition of recombination by heterologous inserts and large loop repair are not processed by the same MMR complexes. We propose that the inhibition of conversion by large inserts is due to recognition by the Msh2/Pms1 complex of mismatches created by intrastrand interactions in the heteroduplex loop.


2020 ◽  
Vol 46 (6) ◽  
pp. 875-890
Author(s):  
M. V. Monakhova ◽  
M. A. Milakina ◽  
R. M. Trikin ◽  
T. S. Oretskaya ◽  
E. A. Kubareva

Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 407-416 ◽  
Author(s):  
P Manivasakam ◽  
Susan M Rosenberg ◽  
P J Hastings

Abstract In yeast meiotic recombination, alleles used as genetic markers fall into two classes as regards their fate when incorporated into heteroduplex DNA. Normal alleles are those that form heteroduplexes that are nearly always recognized and corrected by the mismatch repair system operating in meiosis. High PMS (postmeiotic segregation) alleles form heteroduplexes that are inefficiently mismatch repaired. We report that placing any of several high PMS alleles very close to normal alleles causes hyperrecombination between these markers. We propose that this hyperrecombination is caused by the high PMS allele blocking a mismatch repair tract initiated from the normal allele, thus preventing corepair of the two alleles, which would prevent formation of recombinants. The results of three point crosses involving two PMS alleles and a normal allele suggest that high PMS alleles placed between two alleles that are normally corepaired block that corepair.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1363-1371
Author(s):  
Kazuo Negishi ◽  
David Loakes ◽  
Roel M Schaaper

Abstract Deoxyribosyl-dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is a potent mutagenic deoxycytidine-derived base analogue capable of pairing with both A and G, thereby causing G · C → A · T and A · T → G · C transition mutations. We have found that the Escherichia coli DNA mismatch-repair system can protect cells against this mutagenic action. At a low dose, dP is much more mutagenic in mismatch-repair-defective mutH, mutL, and mutS strains than in a wild-type strain. At higher doses, the difference between the wild-type and the mutator strains becomes small, indicative of saturation of mismatch repair. Introduction of a plasmid containing the E. coli mutL+ gene significantly reduces dP-induced mutagenesis. Together, the results indicate that the mismatch-repair system can remove dP-induced replication errors, but that its capacity to remove dP-containing mismatches can readily be saturated. When cells are cultured at high dP concentration, mutant frequencies reach exceptionally high levels and viable cell counts are reduced. The observations are consistent with a hypothesis in which dP-induced cell killing and growth impairment result from excess mutations (error catastrophe), as previously observed spontaneously in proofreading-deficient mutD (dnaQ) strains.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


Sign in / Sign up

Export Citation Format

Share Document