scholarly journals Esc1, a Nuclear Periphery Protein Required for Sir4-Based Plasmid Anchoring and Partitioning

2002 ◽  
Vol 22 (23) ◽  
pp. 8292-8301 ◽  
Author(s):  
Erik D. Andrulis ◽  
David C. Zappulla ◽  
Athar Ansari ◽  
Severine Perrod ◽  
Catherine V. Laiosa ◽  
...  

ABSTRACT A targeted silencing screen was performed to identify yeast proteins that, when tethered to a telomere, suppress a telomeric silencing defect caused by truncation of Rap1. A previously uncharacterized protein, Esc1 (establishes silent chromatin), was recovered, in addition to well-characterized proteins Rap1, Sir1, and Rad7. Telomeric silencing was slightly decreased in Δesc1 mutants, but silencing of the HM loci was unaffected. On the other hand, targeted silencing by various tethered proteins was greatly weakened in Δesc1 mutants. Two-hybrid analysis revealed that Esc1 and Sir4 interact via a 34-amino-acid portion of Esc1 (residues 1440 to 1473) and a carboxyl-terminal domain of Sir4 known as PAD4 (residues 950 to 1262). When tethered to DNA, this Sir4 domain confers efficient partitioning to otherwise unstable plasmids and blocks the ability of bound DNA segments to rotate freely in vivo. Here, both phenomena were shown to require ESC1. Sir protein-mediated partitioning of a telomere-based plasmid also required ESC1. Fluorescence microscopy of cells expressing green fluorescent protein (GFP)-Esc1 showed that the protein localized to the nuclear periphery, a region of the nucleus known to be functionally important for silencing. GFP-Esc1 localization, however, was not entirely coincident with telomeres, the nucleolus, or nuclear pore complexes. Our data suggest that Esc1 is a component of a redundant pathway that functions to localize silencing complexes to the nuclear periphery.

2005 ◽  
Vol 16 (11) ◽  
pp. 5258-5268 ◽  
Author(s):  
Benoît Palancade ◽  
Michela Zuccolo ◽  
Sophie Loeillet ◽  
Alain Nicolas ◽  
Valérie Doye

Using a genetic screen, we have identified a previously uncharacterized Saccharomyces cerevisiae open reading frame (renamed PML39) that displays a specific interaction with nucleoporins of the Nup84 complex. Localization of a Pml39-green fluorescent protein (GFP) fusion and two-hybrid studies revealed that Pml39 is mainly docked to a subset of nuclear pore complexes opposite to the nucleolus through interactions with Mlp1 and Mlp2. The absence of Pml39 leads to a specific leakage of unspliced mRNAs that is not enhanced upon MLP1 deletion. In addition, overexpression of PML39-GFP induces a specific trapping of mRNAs transcribed from an intron-containing reporter and of the heterogenous nuclear ribonucleoprotein Nab2 within discrete nuclear domains. In a nup60Δ mutant, Pml39 is mislocalized together with Mlp1 and Mlp2 in intranuclear foci that also recruit Nab2. Moreover, pml39Δ partially rescues the thermosensitive phenotypes of messenger ribonucleoparticles (mRNPs) assembly mutants, indicating that PML39 deletion also bypasses the requirement for normally assembled mRNPs. Together, these data indicate that Pml39 is an upstream effector of the Mlps, involved in the retention of improper mRNPs in the nucleus before their export.


2001 ◽  
Vol 154 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Nathalie Daigle ◽  
Joël Beaudouin ◽  
Lisa Hartnell ◽  
Gabriela Imreh ◽  
Einar Hallberg ◽  
...  

The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121–green fluorescent protein (GFP) and GFP-Nup153, and GFP–lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.


2000 ◽  
Vol 11 (7) ◽  
pp. 2445-2457 ◽  
Author(s):  
Xiaozhou Pan ◽  
Paul Roberts ◽  
Yan Chen ◽  
Erik Kvam ◽  
Natalyia Shulga ◽  
...  

Vac8p is a vacuolar membrane protein that is required for efficient vacuole inheritance and fusion, cytosol-to-vacuole targeting, and sporulation. By analogy to other armadillo domain proteins, including β-catenin and importin α, we hypothesize that Vac8p docks various factors at the vacuole membrane. Two-hybrid and copurfication assays demonstrated that Vac8p does form complexes with multiple binding partners, including Apg13p, Vab2p, and Nvj1p. Here we describe the surprising role of Vac8p-Nvj1p complexes in the formation of nucleus–vacuole (NV) junctions. Nvj1p is an integral membrane protein of the nuclear envelope and interacts with Vac8p in the cytosol through its C-terminal 40–60 amino acids (aa). Nvj1p green fluorescent protein (GFP) concentrated in small patches or rafts at sites of close contact between the nucleus and one or more vacuoles. Previously, we showed that Vac8p-GFP concentrated in intervacuole rafts, where is it likely to facilitate vacuole-vacuole fusion, and in “orphan” rafts at the edges of vacuole clusters. Orphan rafts of Vac8p red-sifted GFP (YFP) colocalize at sites of NV junctions with Nvj1p blue-sifted GFP (CFP). GFP-tagged nuclear pore complexes (NPCs) were excluded from NV junctions. In vac8-Δ cells, Nvj1p-GFP generally failed to concentrate into rafts and, instead, encircled the nucleus. NV junctions were absent in both nvj1-Δ andvac8-Δ cells. Overexpression of Nvj1p caused the profound proliferation of NV junctions. We conclude that Vac8p and Nvj1p are necessary components of a novel interorganelle junction apparatus.


1998 ◽  
Vol 9 (9) ◽  
pp. 2439-2461 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

Nuclear pore complexes (NPCs) are large proteinaceous portals for exchanging macromolecules between the nucleus and the cytoplasm. Revealing how this transport apparatus is assembled will be critical for understanding the nuclear transport mechanism. To address this issue and to identify factors that regulate NPC formation and dynamics, a novel fluorescence-based strategy was used. This approach is based on the functional tagging of NPC proteins with the green fluorescent protein (GFP), and the hypothesis that NPC assembly mutants will have distinct GFP-NPC signals as compared with wild-type (wt) cells. By fluorescence-activated cell sorting for cells with low GFP signal from a population of mutagenized cells expressing GFP-Nup49p, three complementation groups were identified: two correspond to mutantnup120 and gle2 alleles that result in clusters of NPCs. Interestingly, a third group was a novel temperature-sensitive allele of nup57. The lowered GFP-Nup49p incorporation in the nup57-E17 cells resulted in a decreased fluorescence level, which was due in part to a sharply diminished interaction between the carboxy-terminal truncated nup57pE17and wt Nup49p. Interestingly, thenup57-E17 mutant also affected the incorporation of a specific subset of other nucleoporins into the NPC. Decreased levels of NPC-associated Nsp1p and Nup116p were observed. In contrast, the localizations of Nic96p, Nup82p, Nup159p, Nup145p, and Pom152p were not markedly diminished. Coincidentally, nuclear import capacity was inhibited. Taken together, the identification of such mutants with specific perturbations of NPC structure validates this fluorescence-based strategy as a powerful approach for providing insight into the mechanism of NPC biogenesis.


2010 ◽  
Vol 21 (6) ◽  
pp. 1072-1087 ◽  
Author(s):  
Laura C. Titus ◽  
T. Renee Dawson ◽  
Deborah J. Rexer ◽  
Kathryn J. Ryan ◽  
Susan R. Wente

The assembly, distribution, and functional integrity of nuclear pore complexes (NPCs) in the nuclear envelope (NE) are key determinants in the nuclear periphery architecture. However, the mechanisms controlling proper NPC and NE structure are not fully defined. We used two different genetic screening approaches to identify Saccharomyces cerevisiae mutants with defects in NPC localization. The first approach examined green fluorescent protein (GFP)-Nic96 in 531 strains from the yeast Tet-promoters Hughes Collection with individual essential genes expressed from a doxycycline-regulated promoter (TetO7-orf). Under repressive conditions, depletion of the protein encoded by 44 TetO7-orf strains resulted in mislocalized GFP-Nic96. These included STH1, RSC4, RSC8, RSC9, RSC58, ARP7, and ARP9, each encoding components of the RSC chromatin remodeling complex. Second, a temperature-sensitive sth1-F793S (npa18-1) mutant was identified in an independent genetic screen for NPC assembly (npa) mutants. NPC mislocalization in the RSC mutants required new protein synthesis and ongoing transcription, confirming that lack of global transcription did not underlie the phenotypes. Electron microscopy studies showed significantly altered NEs and nuclear morphology, with coincident cytoplasmic membrane sheet accumulation. Strikingly, increasing membrane fluidity with benzyl alcohol treatment prevented the sth1-F793S NE structural defects and NPC mislocalization. We speculate that NE structure is functionally linked to proper chromatin architecture.


2004 ◽  
Vol 15 (7) ◽  
pp. 3333-3344 ◽  
Author(s):  
Isabelle Loïodice ◽  
Annabelle Alves ◽  
Gwénaël Rabut ◽  
Megan van Overbeek ◽  
Jan Ellenberg ◽  
...  

In eukaryotes, bidirectional transport of macromolecules between the cytoplasm and the nucleus occurs through elaborate supramolecular structures embedded in the nuclear envelope, the nuclear pore complexes (NPCs). NPCs are composed of multiple copies of ∼30 different proteins termed nucleoporins, of which several can be biochemically isolated as subcomplexes. One such building block of the NPC, termed the Nup107-160 complex in vertebrates, was so far demonstrated to be composed of six different nucleoporins. Here, we identify three WD (Trp-Asp)-repeat nucleoporins as new members of this complex, two of which, Nup37 and Nup43, are specific to higher eukaryotes. The third new member Seh1 is more loosely associated with the Nup107-160 complex biochemically, but its depletion by RNA interference leads to phenotypes similar to knock down of other constituents of this complex. By combining green fluorescent protein-tagged nucleoporins and specific antibodies, we show that all the constituents of this complex, including Nup37, Nup43, Seh1, and Sec13, are targeted to kinetochores from prophase to anaphase of mitosis. Together, our results indicate that the entire Nup107-160 complex, which comprises nearly one-third of the so-far identified nucleoporins, specifically localizes to kinetochores in mitosis.


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


2000 ◽  
Vol 129 (2-3) ◽  
pp. 306-312 ◽  
Author(s):  
Nelly Panté ◽  
Franziska Thomas ◽  
Ueli Aebi ◽  
Brian Burke ◽  
Ricardo Bastos

1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document