scholarly journals Members of the RSC Chromatin-Remodeling Complex Are Required for Maintaining Proper Nuclear Envelope Structure and Pore Complex Localization

2010 ◽  
Vol 21 (6) ◽  
pp. 1072-1087 ◽  
Author(s):  
Laura C. Titus ◽  
T. Renee Dawson ◽  
Deborah J. Rexer ◽  
Kathryn J. Ryan ◽  
Susan R. Wente

The assembly, distribution, and functional integrity of nuclear pore complexes (NPCs) in the nuclear envelope (NE) are key determinants in the nuclear periphery architecture. However, the mechanisms controlling proper NPC and NE structure are not fully defined. We used two different genetic screening approaches to identify Saccharomyces cerevisiae mutants with defects in NPC localization. The first approach examined green fluorescent protein (GFP)-Nic96 in 531 strains from the yeast Tet-promoters Hughes Collection with individual essential genes expressed from a doxycycline-regulated promoter (TetO7-orf). Under repressive conditions, depletion of the protein encoded by 44 TetO7-orf strains resulted in mislocalized GFP-Nic96. These included STH1, RSC4, RSC8, RSC9, RSC58, ARP7, and ARP9, each encoding components of the RSC chromatin remodeling complex. Second, a temperature-sensitive sth1-F793S (npa18-1) mutant was identified in an independent genetic screen for NPC assembly (npa) mutants. NPC mislocalization in the RSC mutants required new protein synthesis and ongoing transcription, confirming that lack of global transcription did not underlie the phenotypes. Electron microscopy studies showed significantly altered NEs and nuclear morphology, with coincident cytoplasmic membrane sheet accumulation. Strikingly, increasing membrane fluidity with benzyl alcohol treatment prevented the sth1-F793S NE structural defects and NPC mislocalization. We speculate that NE structure is functionally linked to proper chromatin architecture.

1998 ◽  
Vol 9 (9) ◽  
pp. 2439-2461 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

Nuclear pore complexes (NPCs) are large proteinaceous portals for exchanging macromolecules between the nucleus and the cytoplasm. Revealing how this transport apparatus is assembled will be critical for understanding the nuclear transport mechanism. To address this issue and to identify factors that regulate NPC formation and dynamics, a novel fluorescence-based strategy was used. This approach is based on the functional tagging of NPC proteins with the green fluorescent protein (GFP), and the hypothesis that NPC assembly mutants will have distinct GFP-NPC signals as compared with wild-type (wt) cells. By fluorescence-activated cell sorting for cells with low GFP signal from a population of mutagenized cells expressing GFP-Nup49p, three complementation groups were identified: two correspond to mutantnup120 and gle2 alleles that result in clusters of NPCs. Interestingly, a third group was a novel temperature-sensitive allele of nup57. The lowered GFP-Nup49p incorporation in the nup57-E17 cells resulted in a decreased fluorescence level, which was due in part to a sharply diminished interaction between the carboxy-terminal truncated nup57pE17and wt Nup49p. Interestingly, thenup57-E17 mutant also affected the incorporation of a specific subset of other nucleoporins into the NPC. Decreased levels of NPC-associated Nsp1p and Nup116p were observed. In contrast, the localizations of Nic96p, Nup82p, Nup159p, Nup145p, and Pom152p were not markedly diminished. Coincidentally, nuclear import capacity was inhibited. Taken together, the identification of such mutants with specific perturbations of NPC structure validates this fluorescence-based strategy as a powerful approach for providing insight into the mechanism of NPC biogenesis.


2002 ◽  
Vol 22 (23) ◽  
pp. 8292-8301 ◽  
Author(s):  
Erik D. Andrulis ◽  
David C. Zappulla ◽  
Athar Ansari ◽  
Severine Perrod ◽  
Catherine V. Laiosa ◽  
...  

ABSTRACT A targeted silencing screen was performed to identify yeast proteins that, when tethered to a telomere, suppress a telomeric silencing defect caused by truncation of Rap1. A previously uncharacterized protein, Esc1 (establishes silent chromatin), was recovered, in addition to well-characterized proteins Rap1, Sir1, and Rad7. Telomeric silencing was slightly decreased in Δesc1 mutants, but silencing of the HM loci was unaffected. On the other hand, targeted silencing by various tethered proteins was greatly weakened in Δesc1 mutants. Two-hybrid analysis revealed that Esc1 and Sir4 interact via a 34-amino-acid portion of Esc1 (residues 1440 to 1473) and a carboxyl-terminal domain of Sir4 known as PAD4 (residues 950 to 1262). When tethered to DNA, this Sir4 domain confers efficient partitioning to otherwise unstable plasmids and blocks the ability of bound DNA segments to rotate freely in vivo. Here, both phenomena were shown to require ESC1. Sir protein-mediated partitioning of a telomere-based plasmid also required ESC1. Fluorescence microscopy of cells expressing green fluorescent protein (GFP)-Esc1 showed that the protein localized to the nuclear periphery, a region of the nucleus known to be functionally important for silencing. GFP-Esc1 localization, however, was not entirely coincident with telomeres, the nucleolus, or nuclear pore complexes. Our data suggest that Esc1 is a component of a redundant pathway that functions to localize silencing complexes to the nuclear periphery.


2005 ◽  
Vol 16 (11) ◽  
pp. 5258-5268 ◽  
Author(s):  
Benoît Palancade ◽  
Michela Zuccolo ◽  
Sophie Loeillet ◽  
Alain Nicolas ◽  
Valérie Doye

Using a genetic screen, we have identified a previously uncharacterized Saccharomyces cerevisiae open reading frame (renamed PML39) that displays a specific interaction with nucleoporins of the Nup84 complex. Localization of a Pml39-green fluorescent protein (GFP) fusion and two-hybrid studies revealed that Pml39 is mainly docked to a subset of nuclear pore complexes opposite to the nucleolus through interactions with Mlp1 and Mlp2. The absence of Pml39 leads to a specific leakage of unspliced mRNAs that is not enhanced upon MLP1 deletion. In addition, overexpression of PML39-GFP induces a specific trapping of mRNAs transcribed from an intron-containing reporter and of the heterogenous nuclear ribonucleoprotein Nab2 within discrete nuclear domains. In a nup60Δ mutant, Pml39 is mislocalized together with Mlp1 and Mlp2 in intranuclear foci that also recruit Nab2. Moreover, pml39Δ partially rescues the thermosensitive phenotypes of messenger ribonucleoparticles (mRNPs) assembly mutants, indicating that PML39 deletion also bypasses the requirement for normally assembled mRNPs. Together, these data indicate that Pml39 is an upstream effector of the Mlps, involved in the retention of improper mRNPs in the nucleus before their export.


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


2001 ◽  
Vol 154 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Nathalie Daigle ◽  
Joël Beaudouin ◽  
Lisa Hartnell ◽  
Gabriela Imreh ◽  
Einar Hallberg ◽  
...  

The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121–green fluorescent protein (GFP) and GFP-Nup153, and GFP–lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.


2001 ◽  
Vol 12 (2) ◽  
pp. 503-510 ◽  
Author(s):  
Mark Terasaki ◽  
Paul Campagnola ◽  
Melissa M. Rolls ◽  
Pascal A. Stein ◽  
Jan Ellenberg ◽  
...  

Nuclear envelope breakdown was investigated during meiotic maturation of starfish oocytes. Fluorescent 70-kDa dextran entry, as monitored by confocal microscopy, consists of two phases, a slow uniform increase and then a massive wave. From quantitative analysis of the first phase of dextran entry, and from imaging of green fluorescent protein chimeras, we conclude that nuclear pore disassembly begins several minutes before nuclear envelope breakdown. The best fit for the second phase of entry is with a spreading disruption of the membrane permeability barrier determined by three-dimensional computer simulations of diffusion. We propose a new model for the mechanism of nuclear envelope breakdown in which disassembly of the nuclear pores leads to a fenestration of the nuclear envelope double membrane.


2000 ◽  
Vol 11 (7) ◽  
pp. 2445-2457 ◽  
Author(s):  
Xiaozhou Pan ◽  
Paul Roberts ◽  
Yan Chen ◽  
Erik Kvam ◽  
Natalyia Shulga ◽  
...  

Vac8p is a vacuolar membrane protein that is required for efficient vacuole inheritance and fusion, cytosol-to-vacuole targeting, and sporulation. By analogy to other armadillo domain proteins, including β-catenin and importin α, we hypothesize that Vac8p docks various factors at the vacuole membrane. Two-hybrid and copurfication assays demonstrated that Vac8p does form complexes with multiple binding partners, including Apg13p, Vab2p, and Nvj1p. Here we describe the surprising role of Vac8p-Nvj1p complexes in the formation of nucleus–vacuole (NV) junctions. Nvj1p is an integral membrane protein of the nuclear envelope and interacts with Vac8p in the cytosol through its C-terminal 40–60 amino acids (aa). Nvj1p green fluorescent protein (GFP) concentrated in small patches or rafts at sites of close contact between the nucleus and one or more vacuoles. Previously, we showed that Vac8p-GFP concentrated in intervacuole rafts, where is it likely to facilitate vacuole-vacuole fusion, and in “orphan” rafts at the edges of vacuole clusters. Orphan rafts of Vac8p red-sifted GFP (YFP) colocalize at sites of NV junctions with Nvj1p blue-sifted GFP (CFP). GFP-tagged nuclear pore complexes (NPCs) were excluded from NV junctions. In vac8-Δ cells, Nvj1p-GFP generally failed to concentrate into rafts and, instead, encircled the nucleus. NV junctions were absent in both nvj1-Δ andvac8-Δ cells. Overexpression of Nvj1p caused the profound proliferation of NV junctions. We conclude that Vac8p and Nvj1p are necessary components of a novel interorganelle junction apparatus.


2010 ◽  
Vol 38 (3) ◽  
pp. 829-831 ◽  
Author(s):  
Jindriska Fiserova ◽  
Martin W. Goldberg

The nuclear envelope comprises a distinct compartment at the nuclear periphery that provides a platform for communication between the nucleus and cytoplasm. Signal transfer can proceed by multiple means. Primarily, this is by nucleocytoplasmic trafficking facilitated by NPCs (nuclear pore complexes). Recently, it has been indicated that signals can be transmitted from the cytoskeleton to the intranuclear structures via interlinking transmembrane proteins. In animal cells, the nuclear lamina tightly underlies the inner nuclear membrane and thus represents the protein structure located at the furthest boundary of the nucleus. It enables communication between the nucleus and the cytoplasm via its interactions with chromatin-binding proteins, transmembrane and membrane-associated proteins. Of particular interest is the interaction of the nuclear lamina with NPCs. As both structures fulfil essential roles in close proximity at the nuclear periphery, their interactions have a large impact on cellular processes resulting in affects on tissue differentiation and development. The present review concentrates on the structural and functional lamina–NPC relationship in animal cells and its potential implications to plants.


1999 ◽  
Vol 112 (13) ◽  
pp. 2253-2264 ◽  
Author(s):  
K. Bodoor ◽  
S. Shaikh ◽  
D. Salina ◽  
W.H. Raharjo ◽  
R. Bastos ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized. Using both conventional and digital confocal immunofluorescence microscopy we have been able to define a time course of post-mitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a component of the nuclear basket, associates with chromatin towards the end of anaphase, in parallel with the inner nuclear membrane protein, LAP2. However, immunogold labeling suggests that the initial Nup153 chromatin association is membrane-independent. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, 54, 45) during mitosis and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates.


2019 ◽  
Vol 218 (9) ◽  
pp. 2945-2961 ◽  
Author(s):  
Terra M. Kuhn ◽  
Pau Pascual-Garcia ◽  
Alejandro Gozalo ◽  
Shawn C. Little ◽  
Maya Capelson

Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state.


Sign in / Sign up

Export Citation Format

Share Document