g1 phase
Recently Published Documents


TOTAL DOCUMENTS

1383
(FIVE YEARS 247)

H-INDEX

87
(FIVE YEARS 6)

2022 ◽  
Vol 20 (2) ◽  
pp. 249-256
Author(s):  
Yun Deng ◽  
Zhiwei Luo ◽  
Peilin Feng ◽  
Shuai Wang

Purpose: To investigate the effect of long-chain non-coding RNA LINC00491 (LncRNA LINC00491) on the proliferation, migration and invasion of tongue squamous cell carcinoma (TSCC) cells, and the underlying mechanism. Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) was applied to determine the expressions of LINC00491 and micro-RNA-384 (miR-384). Furthermore, LINC00491 and miR-384 were transfected into CAL-27 cells, while cell cycle was analyzed using flow cytometry. Cell proliferation was determined by methyl thiazolyl diphenyl-tetrazolium (MTT) assay. Cell migration and invasion were evaluated using Transwell experiments. The relationship between LINC00491 and miR-384 was confirmed using double luciferase reporting assay, while protein expression levels of P21, Ki67, E- cadherin, N-cadherin, and vimentin were assayed with Western blotting. Results: The expression of LINC00491 increased in TSCC tissues (p < 0.05). The proportion of cells in G1-phase increased, while the proportion of cells in S-phase decreased (p < 0.05). There was decrease in cell survival, cell migration and cell invasion (p < 0.05). The protein expression levels of Ki67, N- cadherin, and vimentin were lowered, while those of P21, E-cadherin protein were increased (p < 0.05). Transfection of LINC00491 and miR- 384 reduced the proportion of cells in G1 phase, but increased the proportion of cells in S-phase (p < 0.05). Moreover, cell survival, migration and invasion were increased. The protein expressions of Ki67, N-cadherin, and vimentin rose, while those of P21 and E-cadherin decreased (p < 0.05). Conclusion: LINC00491 promotes the proliferation, migration and invasion of TSCC cells by inhibiting miR-384. This finding provides a potential target for the treatment of TSCC.


2022 ◽  
Author(s):  
Xiaomi Lu ◽  
Lili Shao ◽  
Ye Qian ◽  
Sixun Zhong ◽  
Jinhong Chen ◽  
...  

Abstract The aim of the study was to explore the role of the E3 ubiquitin ligase MARCH7 in the development of non-small-cell lung cancer (NSCLC) and to explore the underlying molecular mechanism.Western blot and immunohistochemistry results showed that the expression of MARCH7 in NSCLC cancer tissues was higher than that in paracancerous tissues. Tissue microarray staining results and clinicopathological parameters of NSCLC patients revealed that MARCH7 expression was closely related to TNM stage, degree of tumor differentiation and lymph node metastasis of NSCLC patients. Furthermore, univariate and multivariate analyses and survival curve analysis showed that high expression of MARCH7 was associated with poor prognosis.In vitro, siRNA was constructed and transfected into A549 cells to inhibit the expression of MARCH7. The CCK-8 assay indicated that the growth rate of tumor cells in the interference group was reduced. The number of colonies and cells in the interference group decreased in the plate clone formation experiment. Flow cytometry showed that G0/G1 phase cells were predominantly increased after blocking endogenous MARCH7 expression, and G0/G1 phase arrest occurred in A549 cells. The reporter gene activity of the NF-κB signaling pathway and Wnt/β-catenin signaling pathway was reduced, as validated by a double luciferase reporter gene assay. Western blot analysis showed that the expression of NF-κB P50, NF-κB P65 and β-catenin was decreased, while the expression of E-cadherin was elevated.In vivo, MARCH7-overexpressing virus was constructed and transfected into A549 cells and then subcutaneously injected into nude mice. It was demonstrated that the tumor volume was significantly larger in the MARCH7 overexpression group than in the control nude mice during the same period. Elevated expression of PCNA and Ki-67 was observed in the tumor mass of the MARCH7 overexpression group, as measured by immunohistochemical analysis, accompanied by enhanced levels of NF-κB P50, NF-κB P65 and β-catenin, as detected by Western blot. These results provide a new idea for the experimental basis for the treatment of NSCLC in the future.


2022 ◽  
Author(s):  
Riyad Almaimani ◽  
Akhmed Aslam ◽  
Jawwad Ahmad ◽  
Mahmoud Zaki El-Readi ◽  
Mohamed El-Boshy ◽  
...  

Abstract Purpose: Chemoresistance to 5-Fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment. This study measured the chemotherapeutic effects of 5-FU, calcitriol, and/or metformin single/dual/triple regimens as complementary/alternative therapies. Methods: Ninety male mice were divided into: negative and positive (PC) controls, 5-FU, Cal, Met, 5-FU/Cal, 5-FU/Met, Cal/Met, and 5-FU/Cal/Met groups. Treatments lasted four weeks following CRC induction by azoxymethane. The therapeutic regimens were also applied in the SW480 and SW620 CRC cell lines. Results: The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1) and PI3K/Akt/mTOR alongside reduced p21/PTEN/Cytochrome-C/Caspase-3 and apoptosis. All therapies reduced tumour numbers, with 5-FU/Cal/Met most prominent regimen. All protocols also decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, increased pro-apoptotic molecules with apoptosis index, and 5-FU/Cal/Met revealed the strongest anti-cancer effects. In vitro, all therapies equally induced G1-phase arrest in SW480 cells, whereas metformin-alone showed maximal SW620 cell numbers in G0/G1-phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell numbers (13%), whilst 5-FU/Cal/Met disclosed the lowest percentage (81%) of viable SW620 cells. Moreover, 5-FU/Cal/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival (BCL2) and the PI3K/Akt/mTOR molecules alongside highest expression of cell cycle inhibitors (p21/p27), pro-apoptotic markers (BAX/Cytochrome-C/Caspase-3), and PTEN in both cell lines. Conclusions: Metformin monotherapy was superior to calcitriol, whereas the 5-FU/metformin protocol showed better anti-cancer effects relative to the other dual therapies. However, the 5-FU/Cal/Met approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway.


2021 ◽  
Author(s):  
Zhengrong Wu ◽  
Wei Deng ◽  
Dian He

Abstract A series of prodrugs for nitroreductase based 4-β-amino-4'- Demethylepipodophyllotoxin as potential anticancer agents were synthesized, and their antiproliferative activities in vitro showed compounds 2b (IC50=0.77, 0.83 and 1.19 μM) and 2d (IC50=0.98, 0.91 and 1.58 μM) were greatly selectively toxic to tumor cells A-549, HeLa and HepG2, respectively, and lower damage to normal WI-38 cells in comparison with positive agent Etoposide and Demethylepipodophyllotoxin, and induced cell cycle arrest in the G2/M phase with a concomitant decrease in the population of G1 phase in HeLa cells, which were accompanied by apoptosis. Furthermore, Molecular docking model showed that compounds 2b and 2d appeared to form stable bonds with NTR 1DS7. Taken together, these conjugates have the potential to be developed as anti-tumor drugs.


2021 ◽  
Vol 23 (1) ◽  
pp. 52
Author(s):  
Kamila Domińska ◽  
Kinga Anna Urbanek ◽  
Karolina Kowalska ◽  
Dominika Ewa Habrowska-Górczyńska ◽  
Marta Justyna Kozieł ◽  
...  

High-grade serous ovarian carcinoma (HGSOC) is the most frequent and malignant form of ovarian cancer. A local renin–angiotensin system (RAS) has been found in the ovary, and changes in selected components of this system were observed in pathological states and also in ovarian cancer. In the present study, we examined the effect of three peptides, Ang-(1-7), Ang-(1-9) and Ang-(3-7), on proliferation and motility of the OVPA8 cell line, a new well-defined and preclinical model of HGSOC. We confirmed the presence of mRNA for all angiotensin receptors in the tested cells. Furthermore, our findings indicate that all tested angiotensin peptides increased the metabolic serum in the medium by activation of cell defense mechanisms such as nuclear factor kappaB signaling pathway andapoptosis. Moreover, tested angiotensin peptides intensified serum starvation-induced cell cycle arrest at the G0/G1 phase. In the case of Ang-(3-7), a significant decrease in the number of Ki67 positive cells (Ki67+) and reduced percentage of activated ERK1/2 levels in ovarian cancer cells were additionally reported. The angiotensin-induced effect of the accumulation of cells in the G0/G1 phase was not observed in OVPA8 cells growing on the medium with 10% FBS. Moreover, in the case of Ang-(3-7), the tendency was quite the opposite. Ang-(1-7) but not Ang-(1-9) or Ang-(3-7) increased the mobility of reluctant-to-migrate OVAP8 cells cultured in the serum-free medium. In any cases, the changes in the expression of VIM and HIF1A gene, associated with epithelial–mesenchymal transition (EMT), were not observed. In conclusion, we speculate that the adaptation to starvation in nutrient-deprived tumors can be modulated by peptides from the renin–angiotensin system. The influence of angiotensin peptides on cancer cells is highly dependent on the availability of growth factors and nutrients.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Hilary A. Coller

Using microfluidics and imaging, Argüello-Miranda et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103171) monitor the response of individual yeast cells to nutrient withdrawal. They discover that cells arrest not only in the early G1 phase as expected, but also later in the cell cycle, and that an endoplasmic reticulum stress-induced transcription factor, Xbp1, is critical for arrest at other cell cycle phases.


2021 ◽  
Author(s):  
Alena Gschwind ◽  
Christian Marx ◽  
Marie D. Just ◽  
Paula Severin ◽  
Hannah Behring ◽  
...  

Abstract BackgroundAutophagy plays an essential role in maintaining cellular homeostasis and in the response to cellular stress. Autophagy is also involved in cell cycle progression, yet the relationship between these processes is not clearly defined.ResultsIn exploring this relationship, we observed that the inhibition of autophagy impaired the G2/M phase-arresting activity of etoposide but enhanced the G1 phase-arresting activity of palbociclib. We further investigated the connection of basal autophagy and cell cycle by utilizing the autophagosome tracer dye Cyto-ID in two ways. First, we established a double-labeling flow-cytometric procedure with Cyto-ID and the DNA probe DRAQ5, permitting the cell cycle phase-specific determination of autophagy in live cells. This approach demonstrated that different cell cycle phases were associated with different autophagy levels: G1 phase cells had the lowest one and G2/M phase cells had the highest one. Second, we developed a flow-cytometric cell sorting procedure based on Cyto-ID that separates cell populations into fractions with low, medium and high autophagy. Cell cycle analysis of Cyto-ID-sorted cells confirmed that the high autophagy fraction contained a much higher percentage of G2/M phase cells than the low autophagy fraction. Beyond that, Cyto-ID-based cell sorting proved also to be useful for assessing other autophagy-related processes: extracellular flux analysis revealed metabolic differences between the cell populations, with higher autophagy being associated with higher respiration, higher mitochondrial ATP production and higher glycolysis.ConclusionThis work sheds new light on the interrelation of autophagy and cell cycle by establishing a novel cell sorting technique based on Cyto-ID.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-Wan Chao ◽  
Yueh-Hsiung Kuo ◽  
Bi-Fong Lin

Aim:Andrographis paniculata (Burm. f.) Nees (also known as Chuanxinlian in Chinese) of Acanthaceae family is one of the Chinese herbs reputed to be effective in the treatment of inflammation, infection, cold, and fever. Enterovirus 71 (EV71) is one of the most important enteroviruses that cause hand, foot, and mouth disease (HFMD) accompanied with neurological complication.Methods: To explore an anti-infective Chinese herb medicine, pure compounds isolated or synthesized analogues from A. paniculata (AP) ethyl acetate (EtOAc) extract are used to explore their anti-EV71-induced cytotoxicity. The antiviral activity was determined by cytopathic effect (CPE) reduction, and sub-G1 assays were used for measuring lysis and apoptosis of EV71-infected rhabdomyosarcoma (RD) cells. IFNγ-driven luciferase reporter assay was used to evaluate their potential roles in activation of immune responses.Results: Our data showed that EV71-induced sub-G1 phase of RD cells was dose dependently increased. Highly apoptotic EV71-infected RD cells were reduced by AP extract treatment. Ergosterol peroxide (4) has the most anti-apoptotic effect among these seven compounds. In addition, 3,19-O-acetyl-14-deoxy-11,12-didehydroandrographolide (8) synthesized from acetylation of compound 7 showed significantly better antiviral activity and the lowest sub-G1 phase of 6%–18%. Further investigation of IFNγ-inducer activity of these compounds showed that compounds 3, 6, 10, 11, and 12 had significantly higher IFNγ luciferase activities, suggesting their potential to promote IFNγ expression and thus activate immune responses for antivirus function.Conclusion: Our study demonstrated that bioactive compounds of AP and its derivatives either protecting EV71-infected RD cells from sub-G1 arrest or possessing IFNγ-inducer activity might be feasible for the development of anti-EV71 agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Cheng Yuan ◽  
Rui Bai ◽  
Yanping Gao ◽  
Xueping Jiang ◽  
Shuying Li ◽  
...  

Objective. To explore the effects of miR-195-5p and its target gene HOXA10 on the biological behaviors and radiosensitivity of lung adenocarcinoma (LUAD) cells. Methods. The effects of miR-195-5p on LUAD cell proliferation, migration, invasion, cycle arrest, apoptosis, and radiosensitivity were investigated by in vitro experiments. The bioinformatics analysis was used to assess its clinical value and predict target genes. Double-luciferase experiments were used to verify whether the miR-195-5p directly targeted HOXA10. A xenograft tumor-bearing mouse model was used to examine its effects on the radiosensitivity of LUAD in vivo. Results. Both gain- and loss-of-function assays demonstrated that miR-195-5p inhibited LUAD cell proliferation, invasion, and migration, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. Double-luciferase experiments confirmed that miR-195-5p directly targeted HOXA10. Downregulation of HOXA10 also inhibited LUAD cell proliferation, migration, and invasion, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. The protein levels of β-catenin, c-myc, and Wnt1 were decreased by miR-195-5p and increased by its inhibitor. Moreover, the effects of the miR-195-5p inhibitor could be eliminated by HOXA10-siRNA. Furthermore, miR-195-5p improved radiosensitivity of LUAD cells in vivo. Conclusion. miR-195-5p has excellent antitumor effects via inhibiting cancer cell growth, invasion, and migration, arresting the cell cycle, promoting apoptosis, and sensitizing LUAD cells to X-ray irradiation by targeting HOXA10. Thus, miR-195-5p may serve as a potential candidate for the treatment of LUAD.


Sign in / Sign up

Export Citation Format

Share Document