Expression of tissue-specific Ren-1 and Ren-2 genes of mice: comparative analysis of 5'-proximal flanking regions

1984 ◽  
Vol 4 (11) ◽  
pp. 2321-2331
Author(s):  
L J Field ◽  
W M Philbrick ◽  
P N Howles ◽  
D P Dickinson ◽  
R A McGowan ◽  
...  

All inbred strains of mice carry the Ren-1 structural gene, which encodes the renin-1 isozyme, the classical renin activity found in kidneys. In addition, some strains carry a second renin structural gene, Ren-2, which encodes the predominantly expressed submaxillary gland renin isozyme, renin-2. Ren-1 and Ren-2 exhibit markedly different patterns of tissue-specific expression. In an effort to understand the molecular basis for this differential expression, detailed analysis of the genomic sequences corresponding to the Ren-1 and Ren-2 genes, and the transcripts originating from these loci, was undertaken. Sequence analysis of regions proximal to the structural genes indicated the presence of eucaryotic consensus sequences for transcription. These sequence motifs were strongly conserved between Ren-1 and Ren-2. Approximately 150 bases upstream from the major transcription initiation site, significant differences between these genes were apparent, including the presence of a repetitive DNA element in the Ren-2 copy as well as other breaks in homology and sequence curiosities. Strong homology between Ren-1 and Ren-2 resumed at a point ca. 200 bases further upstream on Ren-1. S1 analysis of submaxillary gland and kidney RNA populations indicated that the majority of transcripts initiate at homologous positions on Ren-1 and Ren-2. On a per cell basis, the accumulation of Ren-1 transcripts in the kidney and Ren-2 transcripts in the submaxillary gland are probably equivalent. These results suggest that it is tissue-specific utilization of the homologous start sites that is critical to their differential patterns of expression. Models which can account for this observation are presented. Interestingly, we found a minor fraction of transcripts initiating 5' to the major transcription start site. These transcripts encoded an open reading frame which may add an additional 23 amino acids to the N-terminus of the renin precursor.

1984 ◽  
Vol 4 (11) ◽  
pp. 2321-2331 ◽  
Author(s):  
L J Field ◽  
W M Philbrick ◽  
P N Howles ◽  
D P Dickinson ◽  
R A McGowan ◽  
...  

All inbred strains of mice carry the Ren-1 structural gene, which encodes the renin-1 isozyme, the classical renin activity found in kidneys. In addition, some strains carry a second renin structural gene, Ren-2, which encodes the predominantly expressed submaxillary gland renin isozyme, renin-2. Ren-1 and Ren-2 exhibit markedly different patterns of tissue-specific expression. In an effort to understand the molecular basis for this differential expression, detailed analysis of the genomic sequences corresponding to the Ren-1 and Ren-2 genes, and the transcripts originating from these loci, was undertaken. Sequence analysis of regions proximal to the structural genes indicated the presence of eucaryotic consensus sequences for transcription. These sequence motifs were strongly conserved between Ren-1 and Ren-2. Approximately 150 bases upstream from the major transcription initiation site, significant differences between these genes were apparent, including the presence of a repetitive DNA element in the Ren-2 copy as well as other breaks in homology and sequence curiosities. Strong homology between Ren-1 and Ren-2 resumed at a point ca. 200 bases further upstream on Ren-1. S1 analysis of submaxillary gland and kidney RNA populations indicated that the majority of transcripts initiate at homologous positions on Ren-1 and Ren-2. On a per cell basis, the accumulation of Ren-1 transcripts in the kidney and Ren-2 transcripts in the submaxillary gland are probably equivalent. These results suggest that it is tissue-specific utilization of the homologous start sites that is critical to their differential patterns of expression. Models which can account for this observation are presented. Interestingly, we found a minor fraction of transcripts initiating 5' to the major transcription start site. These transcripts encoded an open reading frame which may add an additional 23 amino acids to the N-terminus of the renin precursor.


1990 ◽  
Vol 10 (8) ◽  
pp. 4271-4283 ◽  
Author(s):  
J H Mar ◽  
C P Ordahl

The cardiac troponin T (cTNT) promoter contains a highly muscle specific distal promoter element capable of conferring muscle-specific transcription from a heterologous TATA box-transcription initiation site. Three sequence motifs within this distal promoter element are conserved in the promoter and regulatory regions of many sarcomeric protein genes. Mutational analysis demonstrated that homologies to two of these conserved motifs (CArG/CBAR and MEF 1) were not required for activity of cTNT promoter-marker gene constructs in transfected embryonic skeletal muscle cells. In contrast, disruption of either or both copies of the conserved M-CAT motif (5'-CATTCCT-3') inactivated the cTNT promoter in these cells. Both M-CAT motifs were protected from DNase I cleavage in solution footprint assays by an M-CAT binding factor (MCBF) present in nuclear extracts from embryonic muscle tissue. M-CAT mutations that inactivated the cTNT promoter also disrupted MCBF binding, indicating that MCBF may be a key trans-acting factor required for muscle-specific expression of the cTNT promoter. MCBF also bound to the M-CAT motif in the distal promoter region of the skeletal alpha-actin gene, suggesting that it may play a role in the regulation of this and perhaps other muscle genes that contain M-CAT motifs.


1991 ◽  
Vol 11 (8) ◽  
pp. 4244-4252 ◽  
Author(s):  
H J Son ◽  
K Shahan ◽  
M Rodriguez ◽  
E Derman ◽  
F Costantini

The MUP1.5b gene was previously found to be expressed specifically in the submaxillary gland and at high levels when introduced into mice as a transgene including 4.7 kb of 5'-flanking DNA and 0.3 kb of 3'-flanking DNA. To localize regulatory elements responsible for this tissue-specific pattern of expression, we tested the expression of three additional MUP1.5b transgenes including various amounts of 5'-flanking DNA. These experiments indicated that sequences between -1.85 and -3.46 kb from the transcription initiation site were required for high-level expression in the submaxillary gland. The presence of regulatory elements in this region was also suggested by the detection of a DNase I-hypersensitive site, seen only in submaxillary gland nuclei, at position -2.5 kb upstream from the MUP1.5a gene, a member of the same MUP gene subfamily and virtually identical to the MUP1.5b gene. Further evidence for enhancer activity was provided by the ability of the 1.6-kb DNA fragment including sequences between -1.85 and -3.46 kb to stimulate the expression of an otherwise inactive MUP1.5b-chloramphenicol acetyltransferase fusion gene specifically in the submaxillary gland. The nucleotide sequence of this 1.6-kb DNA fragment was found to be identical for the MUP1.5a and MUP1.5b genes. Together, these results provide the first localization of a cis-acting regulatory sequence involved in the differential tissue-specific expression of the MUP gene family.


1990 ◽  
Vol 10 (4) ◽  
pp. 1423-1431
Author(s):  
L L Searles ◽  
R S Ruth ◽  
A M Pret ◽  
R A Fridell ◽  
A J Ali

The nucleotide sequence and intron-exon structure of the Drosophila melanogaster vermilion (v) gene have been determined. In addition, the sites of several mutations and the effects of these mutations on transcription have been examined. The major v mRNA is generated upon splicing six exons of lengths (5' to 3') 83, 161, 134, 607, 94, and 227 nucleotides (nt). A minor species of v mRNA is initiated at an upstream site and has a 5' exon of at least 152 nt which overlaps the region included in the 83-nt exon of the major v RNA. The three v mutations, v1, v2, and vk, which can be suppressed by mutations at suppressor of sable, su(s), are insertions of transposon 412 at the same position in exon 1, 36 nt downstream of the major transcription initiation site. Despite the 7.5-kilobase insertion in these v alleles, a reduced level of wild-type-sized mRNA accumulates in suppressed mutant strains. The structure and transcription of several unsuppressible v alleles have also been examined. The v36f mutation is a B104/roo insertion in intron 4 near the splice donor site. A mutant carrying this alteration accumulates a very low level of mRNA that is apparently polyadenylated at a site within the B104/roo transposon. The v48a mutation, which deletes approximately 200 nt of DNA, fuses portions of exons 3 and 4 without disruption of the translational reading frame. A smaller transcript accumulates at a wild-type level, and thus an altered, nonfunctional polypeptide is likely to be synthesized in strains carrying this mutation.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 14 (10) ◽  
pp. 6797-6808
Author(s):  
M Salminen ◽  
P Maire ◽  
J P Concordet ◽  
C Moch ◽  
A Porteu ◽  
...  

The expression of the human aldolase A gene is controlled by three alternative promoters. In transgenic mice, pN and pH are active in all tissues whereas pM is activated specifically in adult muscles composed mainly of fast, glycolytic fibers. To detect potential regulatory regions involved in the fast-muscle-specific activation of pM, we analyzed DNase I hypersensitivity in a 4.3-kbp fragment from the 5' end of the human aldolase A gene. Five hypersensitive sites were located near the transcription initiation site of each promoter in those transgenic-mouse tissues in which the corresponding promoter was active. Only one muscle-specific hypersensitive site was detected, mapping near pM. To functionally delimit the elements required for muscle-specific activity of pM, we performed a deletion analysis of the aldolase A 5' region in transgenic mice. Our results show that a 280-bp fragment containing 235 bp of pM proximal upstream sequences together with the noncoding M exon is sufficient for tissue-specific expression of pM. When a putative MEF-2-binding site residing in this proximal pM region is mutated, pM is still active and no change in its tissue specificity is detected. Furthermore, we observed a modulation of pM activity by elements lying further upstream and downstream from pM. Interestingly, pM was expressed in a tissue-specific way in all transgenic mice in which the 280-bp region was present (32 lines and six founder animals). This observation led us to suggest that the proximal pM region contains elements that are able to override to some extent the effects of the surrounding chromatin.


1990 ◽  
Vol 10 (8) ◽  
pp. 4271-4283
Author(s):  
J H Mar ◽  
C P Ordahl

The cardiac troponin T (cTNT) promoter contains a highly muscle specific distal promoter element capable of conferring muscle-specific transcription from a heterologous TATA box-transcription initiation site. Three sequence motifs within this distal promoter element are conserved in the promoter and regulatory regions of many sarcomeric protein genes. Mutational analysis demonstrated that homologies to two of these conserved motifs (CArG/CBAR and MEF 1) were not required for activity of cTNT promoter-marker gene constructs in transfected embryonic skeletal muscle cells. In contrast, disruption of either or both copies of the conserved M-CAT motif (5'-CATTCCT-3') inactivated the cTNT promoter in these cells. Both M-CAT motifs were protected from DNase I cleavage in solution footprint assays by an M-CAT binding factor (MCBF) present in nuclear extracts from embryonic muscle tissue. M-CAT mutations that inactivated the cTNT promoter also disrupted MCBF binding, indicating that MCBF may be a key trans-acting factor required for muscle-specific expression of the cTNT promoter. MCBF also bound to the M-CAT motif in the distal promoter region of the skeletal alpha-actin gene, suggesting that it may play a role in the regulation of this and perhaps other muscle genes that contain M-CAT motifs.


1994 ◽  
Vol 14 (10) ◽  
pp. 6797-6808 ◽  
Author(s):  
M Salminen ◽  
P Maire ◽  
J P Concordet ◽  
C Moch ◽  
A Porteu ◽  
...  

The expression of the human aldolase A gene is controlled by three alternative promoters. In transgenic mice, pN and pH are active in all tissues whereas pM is activated specifically in adult muscles composed mainly of fast, glycolytic fibers. To detect potential regulatory regions involved in the fast-muscle-specific activation of pM, we analyzed DNase I hypersensitivity in a 4.3-kbp fragment from the 5' end of the human aldolase A gene. Five hypersensitive sites were located near the transcription initiation site of each promoter in those transgenic-mouse tissues in which the corresponding promoter was active. Only one muscle-specific hypersensitive site was detected, mapping near pM. To functionally delimit the elements required for muscle-specific activity of pM, we performed a deletion analysis of the aldolase A 5' region in transgenic mice. Our results show that a 280-bp fragment containing 235 bp of pM proximal upstream sequences together with the noncoding M exon is sufficient for tissue-specific expression of pM. When a putative MEF-2-binding site residing in this proximal pM region is mutated, pM is still active and no change in its tissue specificity is detected. Furthermore, we observed a modulation of pM activity by elements lying further upstream and downstream from pM. Interestingly, pM was expressed in a tissue-specific way in all transgenic mice in which the 280-bp region was present (32 lines and six founder animals). This observation led us to suggest that the proximal pM region contains elements that are able to override to some extent the effects of the surrounding chromatin.


1991 ◽  
Vol 11 (8) ◽  
pp. 4244-4252
Author(s):  
H J Son ◽  
K Shahan ◽  
M Rodriguez ◽  
E Derman ◽  
F Costantini

The MUP1.5b gene was previously found to be expressed specifically in the submaxillary gland and at high levels when introduced into mice as a transgene including 4.7 kb of 5'-flanking DNA and 0.3 kb of 3'-flanking DNA. To localize regulatory elements responsible for this tissue-specific pattern of expression, we tested the expression of three additional MUP1.5b transgenes including various amounts of 5'-flanking DNA. These experiments indicated that sequences between -1.85 and -3.46 kb from the transcription initiation site were required for high-level expression in the submaxillary gland. The presence of regulatory elements in this region was also suggested by the detection of a DNase I-hypersensitive site, seen only in submaxillary gland nuclei, at position -2.5 kb upstream from the MUP1.5a gene, a member of the same MUP gene subfamily and virtually identical to the MUP1.5b gene. Further evidence for enhancer activity was provided by the ability of the 1.6-kb DNA fragment including sequences between -1.85 and -3.46 kb to stimulate the expression of an otherwise inactive MUP1.5b-chloramphenicol acetyltransferase fusion gene specifically in the submaxillary gland. The nucleotide sequence of this 1.6-kb DNA fragment was found to be identical for the MUP1.5a and MUP1.5b genes. Together, these results provide the first localization of a cis-acting regulatory sequence involved in the differential tissue-specific expression of the MUP gene family.


1990 ◽  
Vol 10 (4) ◽  
pp. 1423-1431 ◽  
Author(s):  
L L Searles ◽  
R S Ruth ◽  
A M Pret ◽  
R A Fridell ◽  
A J Ali

The nucleotide sequence and intron-exon structure of the Drosophila melanogaster vermilion (v) gene have been determined. In addition, the sites of several mutations and the effects of these mutations on transcription have been examined. The major v mRNA is generated upon splicing six exons of lengths (5' to 3') 83, 161, 134, 607, 94, and 227 nucleotides (nt). A minor species of v mRNA is initiated at an upstream site and has a 5' exon of at least 152 nt which overlaps the region included in the 83-nt exon of the major v RNA. The three v mutations, v1, v2, and vk, which can be suppressed by mutations at suppressor of sable, su(s), are insertions of transposon 412 at the same position in exon 1, 36 nt downstream of the major transcription initiation site. Despite the 7.5-kilobase insertion in these v alleles, a reduced level of wild-type-sized mRNA accumulates in suppressed mutant strains. The structure and transcription of several unsuppressible v alleles have also been examined. The v36f mutation is a B104/roo insertion in intron 4 near the splice donor site. A mutant carrying this alteration accumulates a very low level of mRNA that is apparently polyadenylated at a site within the B104/roo transposon. The v48a mutation, which deletes approximately 200 nt of DNA, fuses portions of exons 3 and 4 without disruption of the translational reading frame. A smaller transcript accumulates at a wild-type level, and thus an altered, nonfunctional polypeptide is likely to be synthesized in strains carrying this mutation.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 8 (7) ◽  
pp. 2896-2909 ◽  
Author(s):  
E A Sternberg ◽  
G Spizz ◽  
W M Perry ◽  
D Vizard ◽  
T Weil ◽  
...  

Terminal differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzyme of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers. To test for sequences required for regulated expression, a region upstream of the MCK gene from -4800 to +1 base pairs, relative to the transcription initiation site, was linked to the coding sequences of the bacterial chloramphenicol acetyltransferase (CAT) gene. Introduction of this MCK-CAT fusion gene into C2 muscle cells resulted in high-level expression of CAT activity in differentiated myotubes and no detectable expression in proliferating undifferentiated myoblasts or in nonmyogenic cell lines. Deletion mutagenesis of sequences between -4800 and the transcription start site showed that the region between -1351 and -1050 was sufficient to confer cell type-specific and developmentally regulated expression on the MCK promoter. This upstream regulatory element functioned independently of position, orientation, or distance from the promoter and therefore exhibited the properties of a classical enhancer. This upstream enhancer also was able to confer muscle-specific regulation on the simian virus 40 promoter, although it exhibited a 3- to 5-fold preference for its own promoter. In contrast to the cell type- and differentiation-specific expression of the upstream enhancer, the MCK promoter was able to function in myoblasts and myotubes and in nonmyogenic cell lines when combined with the simian virus 40 enhancer. An additional positive regulatory element was identified within the first intron of the MCK gene. Like the upstream enhancer, this intragenic element functioned independently of position, orientation, and distance with respect to the MCK promoter and was active in differentiated myotubes but not in myoblasts. These results demonstrate that expression of the MCK gene in developing muscle cells is controlled by complex interactions among multiple upstream and intragenic regulatory elements that are functional only in the appropriate cellular context.


Sign in / Sign up

Export Citation Format

Share Document