distal promoter
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 20)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 22 (13) ◽  
pp. 6768
Author(s):  
Afsaneh Malekzadeh Shafaroudi ◽  
Ali Sharifi-Zarchi ◽  
Saeid Rahmani ◽  
Nahid Nafissi ◽  
Seyed Javad Mowla ◽  
...  

miR-29b2 and miR-29c play a suppressive role in breast cancer progression. C1orf132 (also named MIR29B2CHG) is the host gene for generating both microRNAs. However, the region also expresses longer transcripts with unknown functions. We employed bioinformatics and experimental approaches to decipher C1orf132 expression and function in breast cancer tissues. We also used the CRISPR/Cas9 technique to excise a predicted C1orf132 distal promoter and followed the behavior of the edited cells by real-time PCR, flow cytometry, migration assay, and RNA-seq techniques. We observed that C1orf132 long transcript is significantly downregulated in triple-negative breast cancer. We also identified a promoter for the longer transcripts of C1orf132 whose functionality was demonstrated by transfecting MCF7 cells with a C1orf132 promoter-GFP construct. Knocking-out the promoter by means of CRISPR/Cas9 revealed no alterations in the expression of the neighboring genes CD46 and CD34, while the expression of miR-29c was reduced by half. Furthermore, the promoter knockout elevated the migration ability of the edited cells. RNA sequencing revealed many up- and downregulated genes involved in various cellular pathways, including epithelial to mesenchymal transition and mammary gland development pathways. Altogether, we are reporting here the existence of an additional/distal promoter with an enhancer effect on miR-29 generation and an inhibitory effect on cell migration.


2021 ◽  
Author(s):  
Debosree Pal ◽  
Sangeeta Dutta ◽  
Dhanur P Iyer ◽  
Utsa Bhaduri ◽  
Satyanarayana Manchanahalli Rangasw Rao

LncRNA Mrhlhas been shown to be involved in regulating meiotic commitment of mouse spermatogonial progenitors and coordinating differentiation events in mouse embryonic stem cells. Here we have characterized the interplay of Mrhlwith lineage-specific transcription factors during mouse neuronal lineage development. Our results demonstrate that Mrhl is predominantly expressed in the neuronal progenitor populations in mouse embryonic brains and in retinoic acid derived radial-glia like neuronal progenitor cells. Mrhl levels are significantly down regulated in postnatal brains and in maturing neurons. In neuronal progenitors, a master transcription factor, PAX6, acts to regulate the expression of Mrhl through direct physical binding at a major site in the distal promoter, located at 2.9kb usptream of the TSS of Mrhl. Furthermore, NFAT4 occupies the Mrhl proximal promoter at two sites, at 437bp and 143bp upstream of the TSS. ChIP studies reveal that PAX6 and NFAT4 interact with each other, suggesting co-regulation of lncRNA Mrhl expression in neuronal progenitors. Our studies herewith are crucial towards understanding how lncRNAs are regulated by major lineage-specific TFstowardsdefining specific development and differentiation events.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009613
Author(s):  
Clara Poupault ◽  
Diane Choi ◽  
Khanh Lam-Kamath ◽  
Deepshe Dewett ◽  
Ansa Razzaq ◽  
...  

Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.


2021 ◽  
Author(s):  
Collin B Merrill ◽  
Austin B Montgomery ◽  
Miguel A Pabon ◽  
Aylin R Rodan ◽  
Adrian Rothenfluh

Gene regulation is critical for proper cellular function. Next-generation sequencing technology has revealed the presence of regulatory networks that regulate gene expression and essential cellular functions. Studies investigating the epigenome have begun to uncover the complex mechanisms regulating transcription. Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is quickly becoming the assay of choice for epigenomic investigations. Integrating epigenomic and transcriptomic data has the potential to reveal the chromatin-mediated mechanisms regulating transcription. However, integrating these two data types remains challenging. We used the insulin signaling pathway as a model to investigate chromatin regions and gene expression changes using ATAC- and RNA-seq in insulin-treated Drosophila S2 cells. We show that insulin causes widespread changes in chromatin accessibility and gene expression. Then, we attempted to integrate ATAC- and RNA-seq data to predict functionally-relevant chromatin regions that control the transcriptional response to insulin. We show that using differential chromatin accessibility can predict functionally-relevant genome regions, but that stratifying differentially-accessible chromatin regions by annotated feature type provides a better prediction of whether a chromatin region regulates gene expression. In particular, our data demonstrate a strong correlation between chromatin regions annotated to distal promoters (1-2 kb from the transcription start site). To test this prediction, we cloned candidate distal promoter regions upstream of luciferase and validated the functional relevance of these chromatin regions. Our data show that distal promoter regions selected by correlations with RNA-seq are more likely to control gene expression. Thus, correlating ATAC- and RNA-seq data can home in on functionally-relevant chromatin regions.


2021 ◽  
Author(s):  
Afsaneh Malekzadeh Shafaroudi ◽  
Ali Sharifi-Zarchi ◽  
Saeid Rahmani ◽  
Nahid Nafisi ◽  
Seyed Javad Mowla ◽  
...  

Abstract MIR29B2CHG/C1orf132 is the host gene for generating miR-29b2 and miR-29c. Here, we employed bioinformatics and experimental approaches to decipher expression of C1orf132 in breast cancer cells and tissues. Our data demonstrated a significant downregulation of C1orf132 in triple-negative breast cancer. We also predicted a putative promoter for the longer transcripts of C1orf132. The functionality of the distal promoter was confirmed by transfecting MCF7 cells with a C1orf132 promoter-GFP construct. Knocking-out the promoter by means of CRISPR/Cas9 approach revealed no expression alteration of neighboring genes, CD46 and CD34. However, the expression of miR-29c was reduced by half, suggesting an enhancer effect of the distal promoter on miR-29c generation. Furthermore, the promoter knock-out an elevation of migration ability in MCF12A edited cells. Moreover, the expressions of cell mobility genes e.g., CDH2, FGF2, FGFR1 and the stem cell and EMT-associated transcription factor ZEB1 were significantly elevated in edited cells. RNA sequencing data on the edited and unedited cells revealed many up- and down-regulated genes involved in various cellular pathways, including epithelial to mesenchymal transition and mammary gland development pathways. Altogether, we are reporting the existence of an additional/distal promoter with an enhancer effect on miR-29 generation and an inhibitory effect on cell migration.


2021 ◽  
Vol 296 ◽  
pp. 100689
Author(s):  
Luciana Rocha-Viegas ◽  
Guillermo P. Vicent ◽  
José L. Barañao ◽  
Miguel Beato ◽  
Adalí Pecci

2020 ◽  
Author(s):  
Shiri Levy ◽  
Logesh Somasundaram ◽  
Infencia Xavier Raj ◽  
Diego Ic-Mex ◽  
Sven Schmidt ◽  
...  

SummaryThe critical process in development, bifurcation of cellular fates, requires epigenetic H3K27me3 marks propagated by PRC2 complex. However, the precise chromatin loci of functional H3K27me3 marks are not yet known. Here we identify critical PRC2 functional sites at a single nucleosome resolution. We fused a computationally designed protein, EED binder (EB) that competes with EZH2 and thereby disrupts PRC2 function, to dCas9 (EBdCas9) to direct PRC2 inhibition at a precise locus using gRNA. We targeted EBdCas9 to 4 different genes (TBX18, p16, CDX2 and GATA3) and observed epigenetic remodeling at a single nucleosome resolution resulting in gene activation. Remarkably, while traditional TATA box is located 30bp upstream of TSS, we identified a functional TATA box, >500bp of TSS, normally repressed by PRC2 complex. Deletion of this TATA box eliminates EBdCas9 dependent TBP recruitment and transcriptional activation. Targeting EBdCas9 to CDX2 and GATA3 results in trophoblast trans-differentiation. EBdCas9 technology is broadly applicable for epigenetic regulation at a single locus to control gene expression.Graphical Abstract


2020 ◽  
Vol 117 (34) ◽  
pp. 20860-20867 ◽  
Author(s):  
Benjamin A. Krishna ◽  
Amanda B. Wass ◽  
Christine M. O’Connor

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that latently infects hematopoietic cells and has the ability to reactivate when triggered by immunological stress. This reactivation causes significant morbidity and mortality in immune-deficient patients, who are unable to control viral dissemination. While a competent immune system helps prevent clinically detectable viremia, a portrait of the factors that induce reactivation following the proper cues remains incomplete. Our understanding of the complex molecular mechanisms underlying latency and reactivation continues to evolve. We previously showed the HCMV-encoded G protein-coupled receptorUS28is expressed during latency and facilitates latent infection by attenuating the activator protein-1 (AP-1) transcription factor subunit, c-fos, expression and activity. We now show AP-1 is a critical component for HCMV reactivation. Pharmacological inhibition of c-fos significantly attenuates viral reactivation. In agreement, infection with a virus in which we disrupted the proximal AP-1 binding site in the major immediate early (MIE) enhancer results in inefficient reactivation compared to WT. Concomitantly, AP-1 recruitment to the MIE enhancer is significantly decreased following reactivation of the mutant virus. Furthermore, AP-1 is critical for derepression of MIE-driven transcripts and downstream early and late genes, while immediate early genes from other loci remain unaffected. Our data also reveal MIE transcripts driven from the MIE promoter, the distal promoter, and the internal promoter, iP2, are dependent upon AP-1 recruitment, while iP1-driven transcripts are AP-1–independent. Collectively, our data demonstrate AP-1 binding to and activation of the MIE enhancer is a key molecular process controlling reactivation from latency.


2020 ◽  
Vol 10 (5) ◽  
pp. 1575-1583 ◽  
Author(s):  
Victoria Jorgensen ◽  
Jingxun Chen ◽  
Helen Vander Wende ◽  
Devon E. Harris ◽  
Alicia McCarthy ◽  
...  

Neighboring sequences of a gene can influence its expression. In the phenomenon known as transcriptional interference, transcription at one region in the genome can repress transcription at a nearby region in cis. Transcriptional interference occurs at a number of eukaryotic loci, including the alcohol dehydrogenase (Adh) gene in Drosophila melanogaster. Adh is regulated by two promoters, which are distinct in their developmental timing of activation. It has been shown using transgene insertion that when the promoter distal from the Adh start codon is deleted, transcription from the proximal promoter becomes de-regulated. As a result, the Adh proximal promoter, which is normally active only during the early larval stages, becomes abnormally activated in adults. Whether this type of regulation occurs in the endogenous Adh context, however, remains unclear. Here, we employed the CRISPR/Cas9 system to edit the endogenous Adh locus and found that removal of the distal promoter also resulted in the untimely expression of the proximal promoter-driven mRNA isoform in adults, albeit at lower levels than previously reported. Importantly, transcription from the distal promoter was sufficient to repress proximal transcription in larvae, and the degree of this repression was dependent on the degree of distal promoter activity. Finally, upregulation of the distal Adh transcript led to the enrichment of histone 3 lysine 36 trimethylation over the Adh proximal promoter. We conclude that the endogenous Adh locus is developmentally regulated by transcriptional interference in a tunable manner.


2020 ◽  
Author(s):  
Shiri Levy ◽  
Logesh Somasundaram ◽  
Infencia Raj Xavier ◽  
Diego Ic-Mex ◽  
Sven Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document