scholarly journals Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity.

1984 ◽  
Vol 4 (5) ◽  
pp. 867-874 ◽  
Author(s):  
M J Imperiale ◽  
H T Kao ◽  
L T Feldman ◽  
J R Nevins ◽  
S Strickland

We have employed an antiserum specific to the 70-kilodalton human heat shock protein and a cDNA clone specific to the mRNA for this protein to analyze the expression of the gene under noninducing conditions. Expression of the heat shock gene can be detected in the absence of heat induction, and this uninduced level of expression depends greatly on the particular cell type. For instance, the basal expression of the heat shock gene is at least 50 times higher in HeLa cells than in WI38 cells at both the mRNA and protein levels. We have previously shown that the inducer of transcription of the early adenovirus genes, the E1A gene product, also induces the heat shock gene, suggesting that these genes may be subject to the same regulation. We have, therefore, investigated the control of the adenovirus genes in relation to the cellular control of the heat shock gene. We find that human cells that allow a high level of uninduced expression of the heat shock gene (i.e., HeLa cells) also allow expression of the early adenovirus genes in the absence of the E1A inducer. The same is also true for the mouse F9 teratocarcinoma cell line. F9 stem cells, which constitutively express the heat shock protein, allow early adenovirus gene expression in the absence of E1A; upon differentiation induced by retinoic acid and cyclic AMP, the cells become restrictive and early viral gene expression requires the E1A gene product. Coordinately, upon differentiation there is also a loss of heat shock protein expression.

1984 ◽  
Vol 4 (5) ◽  
pp. 867-874 ◽  
Author(s):  
M J Imperiale ◽  
H T Kao ◽  
L T Feldman ◽  
J R Nevins ◽  
S Strickland

We have employed an antiserum specific to the 70-kilodalton human heat shock protein and a cDNA clone specific to the mRNA for this protein to analyze the expression of the gene under noninducing conditions. Expression of the heat shock gene can be detected in the absence of heat induction, and this uninduced level of expression depends greatly on the particular cell type. For instance, the basal expression of the heat shock gene is at least 50 times higher in HeLa cells than in WI38 cells at both the mRNA and protein levels. We have previously shown that the inducer of transcription of the early adenovirus genes, the E1A gene product, also induces the heat shock gene, suggesting that these genes may be subject to the same regulation. We have, therefore, investigated the control of the adenovirus genes in relation to the cellular control of the heat shock gene. We find that human cells that allow a high level of uninduced expression of the heat shock gene (i.e., HeLa cells) also allow expression of the early adenovirus genes in the absence of the E1A inducer. The same is also true for the mouse F9 teratocarcinoma cell line. F9 stem cells, which constitutively express the heat shock protein, allow early adenovirus gene expression in the absence of E1A; upon differentiation induced by retinoic acid and cyclic AMP, the cells become restrictive and early viral gene expression requires the E1A gene product. Coordinately, upon differentiation there is also a loss of heat shock protein expression.


1983 ◽  
Vol 96 (2) ◽  
pp. 507-514 ◽  
Author(s):  
Stephanie Wittig ◽  
Sigrid Hensse ◽  
Christiane Keitel ◽  
Christine Elsner ◽  
Burghardt Wittig

1982 ◽  
Vol 2 (3) ◽  
pp. 286-292
Author(s):  
S C Wadsworth

At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites.


Sign in / Sign up

Export Citation Format

Share Document