translational level
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 1)

Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lei Liu ◽  
Ying Zhou ◽  
Feng Mao ◽  
Yujuan Gu ◽  
Ziwei Tang ◽  
...  

AbstractGrain size is subtly regulated by multiple signaling pathways in rice. Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level. However, to our knowledge, the molecular mechanism underlying grain size regulation by alternative splicing is largely unknown. GS3, the first identified QTL for grain size in rice, is regulated at the transcriptional and post-translational level. In this study, we identified that GS3 is subject to alternative splicing. GS3.1 and GS3.2, two dominant isoforms, accounts for about 50% and 40% of total transcripts, respectively. GS3.1 encodes the full-length protein, while GS3.2 generated a truncated proteins only containing OSR domain due to a 14 bp intronic sequence retention. Genetic analysis revealed that GS3.1 overexpressors decreased grain size, but GS3.2 showed no significant effect on grain size. Furthermore, we demonstrated that GS3.2 disrupts GS3.1 signaling by competitive occupation of RGB1. Therefore, we draw a conclusion that the alternative splicing of GS3 decreases the amount of GS3.1 and GS3.2 disrupts the GS3.1 signaling to inhibit the negative effects of GS3.1 to fine-tune grain size. Moreover, the mechanism is conserved in cereals rather than in Cruciferae, which is associated with its effects on grain size. The results provide a novel, conserved and important mechanism underlying grain size regulation at the post-transcriptional level in cereals.


2021 ◽  
Author(s):  
Jingnan Liu ◽  
Yuanbing Zhang ◽  
Youfang Zhou ◽  
Qiao-Qi Wang ◽  
Kang Ding ◽  
...  

ABSTRACTTissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here, we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Interestingly, loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, leads to downregulated Collagen-Integrin signaling, weakened adipocyte adhesion, and defective adipose architecture. Strikingly, CTPS specifically binds with Integrin subunit α2, which influences Integrin function and Collagen IV deposition. cytoophidia promote Collagen IV mRNA expression and thus its extracellular deposition to strengthen adipocyte adhesion. Remarkably, Collagen IV-Integrin signaling reciprocally regulates cytoophidium formation at a post-translational level. Together, we demonstrate that a positive feedback signaling loop containing both cytoophidia and Integrin adhesion complex couples tissue architecture and metabolism in the fly adipose.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tengda Huang ◽  
Lin Yu ◽  
Hongyuan Pan ◽  
Zeqiang Ma ◽  
Tian Wu ◽  
...  

An excessive high-fat/energy diet is a major cause of obesity and linked complications, such as non-alcoholic fatty liver disease (NAFLD). Betaine has been shown to effectively improve hepatic lipid metabolism. However, the mechanistic basis for this improvement is largely unknown. Herein, integration of mRNA sequencing and ribosome footprints profiling (Ribo-seq) was used to investigate the means by which betaine alleviates liver lipid metabolic disorders induced by a high-fat diet. For the transcriptome, gene set enrichment analysis demonstrated betaine to reduce liver steatosis by up-regulation of fatty acid beta oxidation, lipid oxidation, and fatty acid catabolic processes. For the translatome, 574 differentially expressed genes were identified, 17 of which were associated with the NAFLD pathway. By combined analysis of transcriptome and translatome, we found that betaine had the greater effect on NAFLD at the translational level. Further, betaine decreased translational efficiency (TE) for IDI1, CYP51A1, TM7SF2, and APOA4, which are related to lipid biosynthesis. In summary, this study demonstrated betaine alleviating lipid metabolic dysfunction at the translational level. The transcriptome and translatome data integration approach used herein provides for a new understanding of the means by which to treat NAFLD.


2021 ◽  
Author(s):  
Lei Liu ◽  
Ying Zhou ◽  
Feng Mao ◽  
Yujuan Gu ◽  
Ziwei Tang ◽  
...  

Abstract Grain size is subtly regulated by multiple signaling pathways in rice. Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level. However, to our knowledge, the molecular mechanism underlying grain size regulation by alternative splicing is largely unknown. GS3, the first identified QTL for grain size in rice, is regulated at the transcriptional and post-translational level. In this study, we identified that GS3 is subject to alternative splicing. GS3.1 and GS3.2, two dominant isoforms, accounts for about 50% and 40% of total transcripts, respectively. GS3.1 encodes the full-length protein, while GS3.2 generated a truncated proteins only containing OSR domain due to a 14 bp intronic sequence retention. Genetic analysis revealed that GS3.1 overexpressors decreased grain size, but GS3.2 showed no significant effect on grain size. Furthermore, we demonstrated that GS3.2 disrupts GS3.1 signaling by competitive occupation of RGB1. Therefore, we draw a conclusion that the alternative splicing of GS3 decreases the amount of GS3.1 and GS3.2 disrupts the GS3.1 signaling to inhibit the negative effects of GS3.1 to fine-tune grain size. Moreover, the mechanism is conserved in cereals rather than in Cruciferae, which is associated with its effects on grain size. The results provide a novel, conserved and important mechanism underlying grain size regulation at the post-transcriptional level in cereals.


2021 ◽  
Vol 22 (18) ◽  
pp. 10107
Author(s):  
Kaixin Wu ◽  
Seon-Min Woo ◽  
Seung-Un Seo ◽  
Taeg-Kyu Kwon

BMI-1, a polycomb ring finger oncogene, is highly expressed in multiple cancer cells and is involved in cancer cell proliferation, invasion, and apoptosis. BMI-1 represents a cancer stemness marker that is associated with the regulation of stem cell self-renewal. In this study, pharmacological inhibition (PTC596) or knockdown (siRNA) of BMI-1 reduced cancer stem-like cells and enhanced cancer cell death. Mechanistically, the inhibition of BMI-1 induced the downregulation of Mcl-1 protein, but not Mcl-1 mRNA. PTC596 downregulated Mcl-1 protein expression at the post-translational level through the proteasome-ubiquitin system. PTC596 and BMI-1 siRNA induced downregulation of DUB3 deubiquitinase, which was strongly linked to Mcl-1 destabilization. Furthermore, overexpression of Mcl-1 or DUB3 inhibited apoptosis by PTC596. Taken together, our findings reveal that the inhibition of BMI-1 induces Mcl-1 destabilization through downregulation of DUB3, resulting in the induction of cancer cell death.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Javier Andrés Soto ◽  
Carlos Rodríguez-Antolín ◽  
Olga Vera ◽  
Olga Pernía ◽  
Isabel Esteban-Rodríguez ◽  
...  

Abstract Background In an effort to contribute to overcoming the platinum resistance exhibited by most solid tumors, we performed an array of epigenetic approaches, integrating next-generation methodologies and public clinical data to identify new potential epi-biomarkers in ovarian cancer, which is considered the most devastating of gynecological malignancies. Methods We cross-analyzed data from methylome assessments and restoration of gene expression through microarray expression in a panel of four paired cisplatin-sensitive/cisplatin-resistant ovarian cancer cell lines, along with publicly available clinical data from selected individuals representing the state of chemoresistance. We validated the methylation state and expression levels of candidate genes in each cellular phenotype through Sanger sequencing and reverse transcription polymerase chain reaction, respectively. We tested the biological role of selected targets using an ectopic expression plasmid assay in the sensitive/resistant tumor cell lines, assessing the cell viability in the transfected groups. Epigenetic features were also assessed in 189 primary samples obtained from ovarian tumors and controls. Results We identified PAX9 and FKBP1B as potential candidate genes, which exhibited epigenetic patterns of expression regulation in the experimental approach. Re-establishment of FKBP1B expression in the resistant OVCAR3 phenotype in which this gene is hypermethylated and inhibited allowed it to achieve a degree of platinum sensitivity similar to the sensitive phenotype. The evaluation of these genes at a translational level revealed that PAX9 hypermethylation leads to a poorer prognosis in terms of overall survival. We also set a precedent for establishing a common epigenetic signature in which the validation of a single candidate, MEST, proved the accuracy of our computational pipelines. Conclusions Epigenetic regulation of PAX9 and FKBP1B genes shows that methylation in non-promoter areas has the potential to control gene expression and thus biological consequences, such as the loss of platinum sensitivity. At the translational level, PAX9 behaves as a predictor of chemotherapy response to platinum in patients with ovarian cancer. This study revealed the importance of the transcript-specific study of each gene under potential epigenetic regulation, which would favor the identification of new markers capable of predicting each patient’s progression and therapeutic response.


2021 ◽  
Vol 11 ◽  
Author(s):  
Emily J. Kay ◽  
Grigorios Koulouras ◽  
Sara Zanivan

Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as ‘wounds that do not heal’. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11803
Author(s):  
YongKiat Wee ◽  
Yining Liu ◽  
Min Zhao

Background Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer. It can be caused by mutations that turn on oncogenes or turn off tumour suppressor genes. For instance, changes in certain genes including Rb and p53 are common in ALL cells. Oncogenes and TSGs may serve as a modulator gene to regulate the gene expression level via their respective target genes. To investigate the regulatory relationship between oncogenes, tumour suppressor genes and transcription factors at the post translational level in childhood ALL, we performed an integrative network analysis on the gene regulation in the post-translational level for childhood ALL based on many publicly available cancer gene expression data including TARGET and GEO database. Methods We collected 259 childhood ALL-related genes from the latest online leukemia database, Leukemia Gene Literature Database. These 259 genes were selected from a comprehensive systematic literature with experimental evidences. The identified and curated genes were also associated with patient survival cases and we incorporated this pediatric ALL-related gene list into our analysis. We extracted the known human TFs from the TRRUST database. Among 259 childhood ALL-related genes, 101 unique regulators were mapped to the list of oncogene and tumour suppressor genes (TSGs) from the ONGene and the TSGene databases, and these included 74 TSGs, 62 oncogenes and 46 TF genes. Results The resulted regulation was presented as a hierarchical regulatory network with transcription factors (TFs) as intermediate regulators connecting the top modulators (oncogene and TSGs) to the common target genes. Cross-validation was applied to the results from the TARGET dataset by identifying the consistent regulatory motifs based on three independent ALL expression datasets. A three-layer regulatory network of consistent positive modulators in childhood ALL was constructed in which 74 modulators (40 oncogenes, 34 TSGs) are considered as the most important regulators. The middle layer and the bottom layer contain 34 TFs and 176 target genes, respectively. Oncogenes mostly participated in positive regulation of gene expression and the transcription process of RNA II polymerase, while TSGs were mainly involved in the negative regulation of gene expression. In addition, the oncogene-specific targets were enriched with regulators of the MAPK cascade while tumour suppressor-specific targets were associated with cell death. Conclusion The results revealed that oncogenes and TSGs possess a different functional regulatory pattern with regard to not only their biological functions but also their specific target genes in childhood ALL cancer progression. Taken together, our findings could contribute to a better understanding of the important regulatory mechanisms and this method could be used to analyse the targeted genes at the post-translational level in childhood ALL through integrative network analysis.


2021 ◽  
Vol 50 (6) ◽  
pp. 1651-1662
Author(s):  
Yugenraj Navaneethan ◽  
Effarizah Mohd Esah ◽  
Norli Ismail

Bacillus cereus is a versatile organism which causes two distinct types of food poisoning by producing toxins. Toxin formation in B. cereus is very much a complex process involving co-regulation of multiple genes exerting control at transcriptional, translational and post-translational level and such regulations too are often influenced by extrinsic factors. A comprehensive understanding of such factors is very crucial for holistic approaches and strategies in order to minimise food poisoning risk. Hence, this review will focus on the intrinsic and extrinsic factors controlling toxin biosynthesis in B. cereus.


Sign in / Sign up

Export Citation Format

Share Document