heat shock gene
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 6)

H-INDEX

59
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Aroosa Khurshid ◽  
Rehan Inayat ◽  
Ansa Tamkeen ◽  
Inzamam Ul Haq ◽  
Chunchun Li ◽  
...  

The management of insect pests under fluctuating temperatures has become an interesting area of study due to their ability to stimulate defense mechanisms against heat stress. Therefore, understanding insect’s physiological and molecular response to heat stress is of paramount importance for pest management. Aphids are ectothermic organisms capable of surviving in different climatic conditions. This study aimed to determine the effects of short-time heat stress on green peach aphid Myzus persicae under controlled conditions. In this study, short-time heat stress treatments at different temperatures 27, 30, 33, and 36°C with exposure times of 1, 3, 6, and 10 h, respectively, on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and oxidants, such as malondialdehyde (MDA) and hydrogen peroxide (H2O2), were determined. The results showed that the short-time heat stress significantly increased the content of MDA of M. persicae by 71, 78, 81, and 86% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with control. The content of H2O2 increased by 75, 80, 85, and 88% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with the control. The SOD, POD, and CAT activities increased by 61, 76, and 77% for 1 h, 72, 83, and 84% for 3 h, 80, 85, and 86% for 6 h, and 87, 87.6, and 88% for 10 h at 36°C, respectively, compared with control. Again, under short-time heat stress, the transcription levels of Hsp22, Hsp23, Hsp27, SOD, POD, and CAT genes were upregulated compared with control. Our results suggest that M. persicae increased the enzymatic antioxidant activity and heat-shock gene expression as one of the defensive mechanisms in response to heat stresses.


Author(s):  
L.Ye. Kozeko ◽  
◽  
E.L. Kordyum ◽  

Mitochondrial heat shock proteins of HSP70 family support protein homeostasis in mitochondria under normal and stress conditions. They provide folding and complex assembly of proteins encoded by mitochondrial genome, as well as import of cytosolic proteins to mitochondria, their folding and protection against aggregation. There are reports about organ-specificity of mitochondrial HSP70 synthesis in plants. However, tissue specificity of their functioning remains incompletely characterized. This problem was studied for mitochondrial AtHSP70-10 in Arabidopsis thaliana seedlings using a transgenic line with uidA signal gene under normal conditions, as well as high temperature and water deficit. Under normal conditions, histochemical GUS-staining revealed the expression of AtHSP70-10 in cotyledon and leaf hydathodes, stipules, central cylinder in root differentiation and mature zones, as well as weak staining in root apex and root-shoot junction zone. RT-PCR analysis of wild-type seedlings exposed to 37°C showed rapid upregulation of AtHSP70-10, which reached the highest level within 2 h. In addition, the gradual development of water deficit for 5 days caused an increase in transcription of this gene, which became more pronounced after 3 days and reached a maximum after 5 days of dehydration. Histochemical analysis showed complete preservation of tissue localization of AtHSP70-10 expression under both abiotic factors. The data obtained indicate the specific functioning of mitochondrial chaperone AtHSP70-10 in certain plant cellular structures.


2020 ◽  
Vol 8 (2) ◽  
pp. 251
Author(s):  
Simona Pepe ◽  
Vincenzo Scarlato ◽  
Davide Roncarati

The medically important human pathogen Helicobacter pylori relies on a collection of highly conserved heat-shock and chaperone proteins to preserve the integrity of cellular polypeptides and to control their homeostasis in response to external stress and changing environmental conditions. Among this set of chaperones, the CbpA protein has been shown to play a regulatory role in heat-shock gene regulation by directly interacting with the master stress-responsive repressor HspR. Apart from this regulatory role, little is known so far about CbpA functional activities. Using biochemistry and molecular biology approaches, we have started the in vitro functional characterization of H. pylori CbpA. Specifically, we show that CbpA is a multifunctional protein, being able to bind DNA and to stimulate the ATPase activity of the major chaperone DnaK. In addition, we report a preliminary observation suggesting that CbpA DNA-binding activity can be affected by the direct interaction with the heat-shock master repressor HspR, supporting the hypothesis of a reciprocal crosstalk between these two proteins. Thus, our work defines novel functions for H. pylori CbpA and stimulates further studies aimed at the comprehension of the complex regulatory interplay among chaperones and heat-shock transcriptional regulators.


2019 ◽  
Vol 116 (49) ◽  
pp. 24712-24718 ◽  
Author(s):  
Bo Zhang ◽  
Sean P. Leonard ◽  
Yiyuan Li ◽  
Nancy A. Moran

The thermal tolerance of an organism limits its ecological and geographic ranges and is potentially affected by dependence on temperature-sensitive symbiotic partners. Aphid species vary widely in heat sensitivity, but almost all aphids are dependent on the nutrient-provisioning intracellular bacterium Buchnera, which has evolved with aphids for 100 million years and which has a reduced genome potentially limiting heat tolerance. We addressed whether heat sensitivity of Buchnera underlies variation in thermal tolerance among 5 aphid species. We measured how heat exposure of juvenile aphids affects later survival, maturation time, and fecundity. At one extreme, heat exposure of Aphis gossypii enhanced fecundity and had no effect on the Buchnera titer. In contrast, heat suppressed Buchnera populations in Aphis fabae, which suffered elevated mortality, delayed development and reduced fecundity. Likewise, in Acyrthosiphon kondoi and Acyrthosiphon pisum, heat caused rapid declines in Buchnera numbers, as well as reduced survivorship, development rate, and fecundity. Fecundity following heat exposure is severely decreased by a Buchnera mutation that suppresses the transcriptional response of a gene encoding a small heat shock protein. Similarly, absence of this Buchnera heat shock gene may explain the heat sensitivity of Ap. fabae. Fluorescent in situ hybridization revealed heat-induced deformation and shrinkage of bacteriocytes in heat-sensitive species but not in heat-tolerant species. Sensitive and tolerant species also differed in numbers and transcriptional responses of heat shock genes. These results show that shifts in Buchnera heat sensitivity contribute to host variation in heat tolerance.


2018 ◽  
Vol 20 (1) ◽  
pp. 107
Author(s):  
Elena Fanelli ◽  
Alberto Troccoli ◽  
Francesca De Luca

Functional characterization of two novel endoglucanase genes, Pv-eng-5 and Pv-eng-8, of the root-lesion nematode Pratylenchus vulnus was carried out. In situ-hybridization experiments revealed that Pv-eng-8 transcript was localized in the pharyngeal glands. Silencing of Pv-eng-5 and Pv-eng-8 resulted in a significant reduction of expression level (52% and 67%, respectively). Furthermore, the silencing of Pv-eng-8 determined a reduction (41%) in nematode reproduction, suggesting that treated nematodes are much less able to process food. Surprisingly, no significant difference on reproduction rate was observed with Pv-eng-5 dsRNA nematodes, suggesting a neofunctionalization of Pv-eng-5 despite the high similarity with nematode endoglucanases. Pratylenchus species are poikilothermic organisms showing close relationships with the environmental temperature. The effects of different temperature ranges revealed that the reproductive potential of P. vulnus increased with increasing temperature from 23 °C to 28 °C, but no reproduction was observed at 33 °C. In real time, increasing temperature from 23 °C to 28 °C the heat shock gene Pv-hsp-90 was differentially expressed in adult stages, while the levels of the effector genes Pv-eng-1 and Pv-eng-8 in females showed no significant differences compared to those observed at 23 °C, only in males Pv-eng-8 level decreased (45%). The upregulation of Pv-hsp-90 in both adult stages suggests a protective mechanism in order to cope with unfavorable environmental conditions.


2018 ◽  
Vol 506 (4) ◽  
pp. 799-804 ◽  
Author(s):  
Ryan Oliverio ◽  
Peter Nguyen ◽  
Brianna Kdeiss ◽  
Sara Ord ◽  
Amanda J. Daniels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document