heat shock protein
Recently Published Documents


TOTAL DOCUMENTS

11314
(FIVE YEARS 1111)

H-INDEX

179
(FIVE YEARS 13)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoxing Yang ◽  
Guangxiang Tong ◽  
Le Dong ◽  
Ting Yan ◽  
Huan Xu ◽  
...  

AbstractAs a powerful and attractive method for detecting gene expression, qRT-PCR has been broadly used in aquaculture research. Understanding the biology of taimen (Hucho taimen) has drawn increasing interest because of its ecological and economic value. Stable reference genes are required for the reliable quantification of gene expression, but such genes have not yet been optimized for taimen. In this study, the stability levels of 10 commonly used candidate reference genes were evaluated using geNorm, NormFinder, BestKeeper, and RefFinder. The expression levels of the 10 genes were detected using 240 samples from 48 experimental groups consisting of 40 individuals treated under four heat-stress conditions (18, 20, 22, and 24 °C) for 24 h and 26 °C for 4, 24, 48, and 72 h. Six tissues (blood, heart, brain, gill, skin, and liver) were collected from each individual. Ribosomal protein S29 (RPS29) and ribosomal protein L19 (RPL19) were the most stable genes among all of the samples, whereas 28S ribosomal RNA (28S rRNA), attachment region binding protein (ARBP), and 18S ribosomal RNA (18S rRNA) were the least stable. These results were verified by an expression analysis of taimen heat-stress genes (heat shock protein 60, hsp60, and heat shock protein 70, hsp70). In conclusion, RPS29 and RPL19 are the optimal reference genes for qRT-PCR analyses of taimen, irrespective of the tissue and experimental conditions. These results allow the reliable study of gene expression in taimen.


2022 ◽  
Vol 23 (2) ◽  
pp. 649
Author(s):  
Siarhei A. Dabravolski ◽  
Vasily N. Sukhorukov ◽  
Vladislav A. Kalmykov ◽  
Nikolay A. Orekhov ◽  
Andrey V. Grechko ◽  
...  

Cardiovascular diseases (CVDs) are the leading cause of death globally, representing approximately 32% of all deaths worldwide. Molecular chaperones are involved in heart protection against stresses and age-mediated accumulation of toxic misfolded proteins by regulation of the protein synthesis/degradation balance and refolding of misfolded proteins, thus supporting the high metabolic demand of the heart cells. Heat shock protein 90 (HSP90) is one of the main cardioprotective chaperones, represented by cytosolic HSP90a and HSP90b, mitochondrial TRAP1 and ER-localised Grp94 isoforms. Currently, the main way to study the functional role of HSPs is the application of HSP inhibitors, which could have a different way of action. In this review, we discussed the recently investigated role of HSP90 proteins in cardioprotection, atherosclerosis, CVDs development and the involvements of HSP90 clients in the activation of different molecular pathways and signalling mechanisms, related to heart ageing.


2022 ◽  
Author(s):  
Shu-Lin Guo ◽  
Chih-Hui Chin ◽  
Chi-Jung Huang ◽  
Chih-Cheng Chien ◽  
Yih-Jing Lee

Stem cell-based therapy has been evaluated in many different clinical trials for various diseases. This capability was applied in various neurodegenerative diseases, such as Alzheimer’s disease, which is characterized by synaptic damage accompanied by neuronal loss. Dental pulp stem cells (DPSCs) are mesenchymal stem cells from the oral cavity and have been studied with potential application for regeneration of different tissues. Heat shock protein 27 (HSP27) is known to regulate neurogenesis in the process of neural differentiation of placenta-multipotent stem cells. Here, we hypothesize that HSP27 expression is also critical in neural differentiation of DPSCs. An evaluation of the possible role of HSP27 in differentiation of DPSCs was per-formed by gene knockdown and neural immunofluorescent staining. We found that HSP27 has a role in the differentiation of DPSCs and that knockdown of HSP27 in DPSCs renders cells to oligodendrocyte progenitors. In other words, shHSP27-DPSCs showed NG2-positive immunoreactivity and gave rise to oligodendrocytes or type-2 astrocytes. This neural differentiation of DPSCs may have clinical significance for treatment of patients with neurodegenerative diseases. In conclusion, our data provide an example of oligodendrocyte differentiation of a DPSCs model that may have potential application in human regenerative medicine.


2022 ◽  
Vol 23 (1) ◽  
pp. 577
Author(s):  
Ying-Hsien Huang ◽  
Feng-Sheng Wang ◽  
Pei-Wen Wang ◽  
Hung-Yu Lin ◽  
Sheng-Dean Luo ◽  
...  

Non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, consists of fat deposited (steatosis) in the liver due to causes besides excessive alcohol use. The folding activity of heat shock protein 60 (HSP60) has been shown to protect mitochondria from proteotoxicity under various types of stress. In this study, we investigated whether HSP60 could ameliorate experimental high-fat diet (HFD)-induced obesity and hepatitis and explored the potential mechanism in mice. The results uncovered that HSP60 gain not only alleviated HFD-induced body weight gain, fat accumulation, and hepatocellular steatosis, but also glucose tolerance and insulin resistance according to intraperitoneal glucose tolerance testing and insulin tolerance testing in HSP60 transgenic (HSP60Tg) compared to wild-type (WT) mice by HFD. Furthermore, overexpression of HSP60 in the HFD group resulted in inhibited release of mitochondrial dsRNA (mt-dsRNA) compared to WT mice. In addition, overexpression of HSP60 also inhibited the activation of toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and phosphorylated-interferon regulatory factor 3 (p-IRF3), as well as inflammatory biomarkers such as mRNA of il-1β and il-6 expression in the liver in response to HFD. The in vitro study also confirmed that the addition of HSP-60 mimics in HepG2 cells led to upregulated expression level of HSP60 and restricted release of mt-dsRNA, as well as downregulated expression levels of TLR3, MDA5, and pIRF3. This study provides novel insight into a hepatoprotective effect, whereby HSP60 inhibits the release of dsRNA to repress the TLR3/MDA5/pIRF3 pathway in the context of NAFLD or hepatic inflammation. Therefore, HSP60 may serve as a possible therapeutic target for improving NAFLD.


2022 ◽  
Vol 546 ◽  
pp. 151661
Author(s):  
Lorena P. Arribas ◽  
José E.F. Alfaya ◽  
M. Gabriela Palomo ◽  
Sebastian Giulianelli ◽  
Rocío A. Nieto Vilela ◽  
...  

2022 ◽  
Author(s):  
Wenqi Wang ◽  
Xi Zhang ◽  
Xiaoyue Ni ◽  
Wen Zhou ◽  
Chen Xie ◽  
...  

Photothermal therapy is a promising phototherapeutic modality which has been widely studied in the cancer therapy. However, because of the influence of heat shock protein (HSP), the therapeutic efficacy of...


2022 ◽  
pp. 39-53
Author(s):  
Aden P. Haskell-Mendoza ◽  
Orin Bloch

Theranostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 105-125
Author(s):  
Ho Jin Lee ◽  
Hye-Young Min ◽  
Young-Sik Yong ◽  
Jihyae Ann ◽  
Cong Truong Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document