scholarly journals Spatial and temporal regulation of a foreign gene by a prestalk-specific promoter in transformed Dictyostelium discoideum.

1986 ◽  
Vol 6 (3) ◽  
pp. 811-820 ◽  
Author(s):  
S Datta ◽  
R H Gomer ◽  
R A Firtel

We analyzed a developmentally regulated prestalk-specific gene from Dictyostelium discoideum encoding a cathepsin-like protease. A hybrid gene was constructed by fusing 2.5 kilobases of 5' flanking sequences and part of the coding region of the gene in-frame to the Escherichia coli beta-glucuronidase gene and was transformed into D. discoideum cells. In cells transformed with this vector, the gene fusion showed the same temporal regulation as the endogenous gene during multicellular development and, like endogenous prestalk genes, was highly inducible by cyclic AMP in in vitro cell cultures. Moreover, immunofluorescence studies showed that the fusion protein had the same spatial distribution within the migrating pseudoplasmodium as the endogenous gene. The results indicate that the regions of the D. discoideum prestalk-specific cathepsin gene contain all the necessary information for proper temporal, spatial, and cyclic AMP regulation of a prestalk cell-type gene in D. discoideum transformants and leads the way for experiments to identify the cell-type-specific regulatory elements.

1986 ◽  
Vol 6 (3) ◽  
pp. 811-820
Author(s):  
S Datta ◽  
R H Gomer ◽  
R A Firtel

We analyzed a developmentally regulated prestalk-specific gene from Dictyostelium discoideum encoding a cathepsin-like protease. A hybrid gene was constructed by fusing 2.5 kilobases of 5' flanking sequences and part of the coding region of the gene in-frame to the Escherichia coli beta-glucuronidase gene and was transformed into D. discoideum cells. In cells transformed with this vector, the gene fusion showed the same temporal regulation as the endogenous gene during multicellular development and, like endogenous prestalk genes, was highly inducible by cyclic AMP in in vitro cell cultures. Moreover, immunofluorescence studies showed that the fusion protein had the same spatial distribution within the migrating pseudoplasmodium as the endogenous gene. The results indicate that the regions of the D. discoideum prestalk-specific cathepsin gene contain all the necessary information for proper temporal, spatial, and cyclic AMP regulation of a prestalk cell-type gene in D. discoideum transformants and leads the way for experiments to identify the cell-type-specific regulatory elements.


1987 ◽  
Vol 7 (1) ◽  
pp. 149-159
Author(s):  
S Datta ◽  
R A Firtel

We have cloned and analyzed a developmentally and spatially regulated prestalk cell-specific gene from Dictyostelium discoideum. The gene encodes a protein highly homologous to the lysosomal cysteine proteinases cathepsin H and cathepsin B. Amino acid comparisons between these enzymes showed that the active-site amino acids were conserved, as were amino acids known to be important for catalysis and residues which form the intramolecular cysteine bridges. We have constructed a series of internal deletions, duplications, and linker scanner mutations within the region 300 base pairs 5' to the cap site. Analysis of expression of the mutations in transformants identified a approximately 35-base pair GC-rich region containing a dAdC/dGdT palindromic repeat and a G-rich box which is homologous to the 3' GT half of the palindromic repeat. Deletion or disruption of the G box resulted in a approximately 50-fold drop in the level of expression of the gene fusion in transformants in response to cyclic AMP in single-cell culture but did not affect the temporal pattern of regulation or control by cyclic AMP. The expression of such constructs during normal multicellular differentiation paralleled that of the endogenous gene; however, the level of RNA from the constructs was only approximately 10-fold lower than that of constructs containing the G box. Deletion of the 3' half of the palindromic sequence and the G box region resulted in a dramatic decrease in the level of transcription, although the constructs still showed proper temporal expression. These results suggest that this 35-base-pair region acts as an important part of the regulatory region for cell type and cyclic AMP regulation.


1987 ◽  
Vol 7 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S Datta ◽  
R A Firtel

We have cloned and analyzed a developmentally and spatially regulated prestalk cell-specific gene from Dictyostelium discoideum. The gene encodes a protein highly homologous to the lysosomal cysteine proteinases cathepsin H and cathepsin B. Amino acid comparisons between these enzymes showed that the active-site amino acids were conserved, as were amino acids known to be important for catalysis and residues which form the intramolecular cysteine bridges. We have constructed a series of internal deletions, duplications, and linker scanner mutations within the region 300 base pairs 5' to the cap site. Analysis of expression of the mutations in transformants identified a approximately 35-base pair GC-rich region containing a dAdC/dGdT palindromic repeat and a G-rich box which is homologous to the 3' GT half of the palindromic repeat. Deletion or disruption of the G box resulted in a approximately 50-fold drop in the level of expression of the gene fusion in transformants in response to cyclic AMP in single-cell culture but did not affect the temporal pattern of regulation or control by cyclic AMP. The expression of such constructs during normal multicellular differentiation paralleled that of the endogenous gene; however, the level of RNA from the constructs was only approximately 10-fold lower than that of constructs containing the G box. Deletion of the 3' half of the palindromic sequence and the G box region resulted in a dramatic decrease in the level of transcription, although the constructs still showed proper temporal expression. These results suggest that this 35-base-pair region acts as an important part of the regulatory region for cell type and cyclic AMP regulation.


2016 ◽  
Author(s):  
Molly Gasperini ◽  
Gregory M. Findlay ◽  
Aaron McKenna ◽  
Jennifer H. Milbank ◽  
Choli Lee ◽  
...  

AbstractThe extent to which distal non-coding mutations contribute to Mendelian disease remains a major unknown in human genetics. Given that a gene’s in vivo function can be appropriately modeled in vitro, CRISPR/Cas9 genome editing enables the large-scale perturbation of distal non-coding regions to identify functional elements in their native context. However, early attempts at such screens have relied on one individual guide RNA (gRNA) per cell, resulting in sparse mutagenesis with minimal redundancy across regions of interest. To address this, we developed a system that uses pairs of gRNAs to program thousands of kilobase-scale deletions that scan across a targeted region in a tiling fashion (“ScanDel”). As a proof-of-concept, we applied ScanDel to program 4,342 overlapping 1- and 2- kilobase (Kb) deletions that tile a 206 Kb region centered on HPRT1, the gene underlying Lesch-Nyhan syndrome, with median 27-fold redundancy per base. Programmed deletions were functionally assayed by selecting for loss of HPRT1 function with 6-thioguanine. HPRT1 exons served as positive controls, and all were successfully identified as functionally critical by the screen. Remarkably, HPRT1 function appeared robust to deletion of any intergenic or deeply intronic non-coding region across the 206 Kb locus, indicating that proximal regulatory sequences are sufficient for its expression. A sparser mutagenesis screen of the same 206 Kb with individual gRNAs also failed to identify critical distal regulatory elements. Although our screen did find programmed deletions and individual gRNAs with putative functional consequences that targeted exon-proximal non-coding sequences (e.g. the promoter), long-read sequencing revealed that this signal was driven almost entirely by rare, unexpected deletions that extended into exonic sequence. These targeted validation experiments defined a small region surrounding the transcriptional start site as the only non-coding sequence essential to HPRT1 function. Overall, our results suggest that distal regulatory elements are not critical for HPRT1 expression, and underscore the necessity of comprehensive edited-locus genotyping for validating the results of CRISPR screens. The application of ScanDel to additional loci will enable more insight into the extent to which the disruption of distal non-coding elements contributes to Mendelian diseases. In addition, dense, redundant, large-scale deletion scanning with gRNA pairs will facilitate a deeper understanding of endogenous gene regulation in the human genome.


1985 ◽  
Vol 5 (4) ◽  
pp. 705-713 ◽  
Author(s):  
M C Mehdy ◽  
R A Firtel

We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.


1989 ◽  
Vol 9 (10) ◽  
pp. 4272-4281 ◽  
Author(s):  
L A Berkowitz ◽  
K T Riabowol ◽  
M Z Gilman

Agents that elevate the intracellular concentration of cyclic AMP (cAMP) rapidly and transiently induce expression of the c-fos proto-oncogene in BALB/c 3T3 cells. We show that the mouse c-fos promoter-enhancer region contains multiple elements that contribute to cAMP responsiveness of the promoter in transient expression assays. The most potent element was found to correspond to a previously mapped basal promoter element and protein-binding site located 65 base pairs upstream of the transcriptional initiation site. This element and two less potent sites contained a match to the cAMP response element (CRE) core sequence defined in several mammalian genes. The relative potencies of these elements corresponded with their relative affinities for cellular factors that bound to the CRE in vitro. Mutation of all three elements failed to abolish completely cAMP responsiveness of the c-fos promoter in the transient expression assay. However, we present evidence that this residual responsiveness may have been due to sequences present in vector DNA. Finally, we show, by using a new microinjection competition assay, that a double-stranded oligonucleotide carrying the major c-fos CRE is sufficient to block induction of the endogenous c-fos gene by cAMP. Therefore, induction of the endogenous gene requires positively acting cellular factors that interact with a single functional class of regulatory sites in the c-fos gene. Unrelated regulatory elements, such as the serum response element and putative AP-2 sites, are not by themselves sufficient to mediate the cAMP response.


1985 ◽  
Vol 5 (4) ◽  
pp. 705-713
Author(s):  
M C Mehdy ◽  
R A Firtel

We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.


1989 ◽  
Vol 9 (10) ◽  
pp. 4272-4281
Author(s):  
L A Berkowitz ◽  
K T Riabowol ◽  
M Z Gilman

Agents that elevate the intracellular concentration of cyclic AMP (cAMP) rapidly and transiently induce expression of the c-fos proto-oncogene in BALB/c 3T3 cells. We show that the mouse c-fos promoter-enhancer region contains multiple elements that contribute to cAMP responsiveness of the promoter in transient expression assays. The most potent element was found to correspond to a previously mapped basal promoter element and protein-binding site located 65 base pairs upstream of the transcriptional initiation site. This element and two less potent sites contained a match to the cAMP response element (CRE) core sequence defined in several mammalian genes. The relative potencies of these elements corresponded with their relative affinities for cellular factors that bound to the CRE in vitro. Mutation of all three elements failed to abolish completely cAMP responsiveness of the c-fos promoter in the transient expression assay. However, we present evidence that this residual responsiveness may have been due to sequences present in vector DNA. Finally, we show, by using a new microinjection competition assay, that a double-stranded oligonucleotide carrying the major c-fos CRE is sufficient to block induction of the endogenous c-fos gene by cAMP. Therefore, induction of the endogenous gene requires positively acting cellular factors that interact with a single functional class of regulatory sites in the c-fos gene. Unrelated regulatory elements, such as the serum response element and putative AP-2 sites, are not by themselves sufficient to mediate the cAMP response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


Sign in / Sign up

Export Citation Format

Share Document