regulatory mechanisms
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Yuntao Xiao ◽  
Li Chu ◽  
Yumeng Zhang ◽  
Yeting Bian ◽  
Jiahui Xiao ◽  

ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.

Blood ◽  
2022 ◽  
Leif Ludwig ◽  
Caleb A Lareau ◽  
Erik L. Bao ◽  
Nan Liu ◽  
Taiju Utsugisawa ◽  

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.

Renjun Mao ◽  
Zhenqing Bai ◽  
Jiawen Wu ◽  
Ruilian Han ◽  
Xuemin Zhang ◽  

Senna obtusifolia is a famous medicinal plant that is widely used in Asian countries. Its seed plays an important role in the treatment of many diseases because it contains various anthraquinones and flavonoids. Our previous studies have indicated that three space environment-induced S. obtusifolia lines (SP-lines) i.e., QC10, QC29, and QC46, have higher seed yield and aurantio-obtusin (AO) content. However, the underlying mechanism of higher AO content in SP-lines is still unknown. Herein, transcriptome sequencing and HPLC were employed to analyze the differences between SP-lines and ground control (GC3) and elucidate the regulatory mechanisms of AO accumulation in SP-lines. The results show that 4002 differentially expressed genes (DEGs) were identified in SP-lines versus (vs.) GC3. DEGs in the QC10 vs. GC3, QC29 vs. GC3, and QC46 vs. GC3 comparisons were classified into 28, 36, and 81 GO terms and involved in 63, 74, and 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene expression analysis revealed that DEGs involved in anthraquinone pathways were significantly elevated in QC10 and QC46. Integrating the results of GO annotation, KEGG enrichment, and gene expression analysis, we propose that the elevated genes such as DAHPS, DHQS, and MenB enhance the metabolic flux in the anthraquinone pathway and promote AO content in QC10 and QC46. Taken together, this study elucidated the mechanism of AO content in SP-lines and provides valuable genetic information for S. obtusifolia. In addition, to the best of our knowledge, this study presents the first transcriptome analysis of environment-induced medicinal plants and paves the way to select elite S. obtusifolia varieties in the future.

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Xiaobo Ma ◽  
Junqiang Su ◽  
Bo Wang ◽  
Xiasheng Jin

Intervertebral disc degeneration (IDD) is a major cause of lower back pain. However, to date, the molecular mechanism of the IDD remains unclear. Gene expression profiles and clinical traits were downloaded from the Gene Expression Omnibus (GEO) database. Firstly, weighted gene coexpression network analysis (WGCNA) was used to screen IDD-related genes. Moreover, least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine (SVM) algorithms were used to identify characteristic genes. Furthermore, we further investigated the immune landscape by the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and the correlations between key characteristic genes and infiltrating immune cells. Finally, a competing endogenous RNA (ceRNA) network was established to show the regulatory mechanisms of characteristic genes. A total of 2458 genes were identified by WGCNA, and 48 of them were disordered. After overlapping the genes obtained by LASSO and SVM-RFE algorithms, genes including LINC01347, ASAP1-IT1, lnc-SEPT7L-1, B3GNT8, CHRNB3, CLEC4F, LOC102724000, SERINC2, and LOC102723649 were identified as characteristic genes of IDD. Moreover, differential analysis further identified ASAP1-IT1 and SERINC2 as key characteristic genes. Furthermore, we found that the expression of both ASAP1-IT1 and SERINC2 was related to the proportions of T cells gamma delta and Neutrophils. Finally, a ceRNA network was established to show the regulatory mechanisms of ASAP1-IT1 and SERINC2. In conclusion, the present study identified ASAP1-IT1 and SERINC2 as the key characteristic genes of IDD through integrative bioinformatic analyses, which may contribute to the diagnosis and treatment of IDD.

Lin Lin ◽  
Mu-Xin Zhang ◽  
Lei Zhang ◽  
Dan Zhang ◽  
Chao Li ◽  

Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.

2022 ◽  
Shun Yan ◽  
Yin Peng ◽  
Jin Lu ◽  
Saima Shakil ◽  
Yang Shi ◽  

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. We specifically inactivated Dicer1 in the endocardium during cardiogenesis, and unexpectedly found that Dicer1-deletion caused congenital mitral valve stenosis and regurgitation, while it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA Sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. Our study thus reveals miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.

2022 ◽  
Vol 5 (4) ◽  
pp. e202101078
Tunahan Ergünay ◽  
Özgecan Ayhan ◽  
Arda B Celen ◽  
Panagiota Georgiadou ◽  
Emre Pekbilir ◽  

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.

2022 ◽  
Vol 12 ◽  
Peiguo Yuan ◽  
Kiwamu Tanaka ◽  
B. W. Poovaiah

Calcium (Ca2+) signaling in plant cells is an essential and early event during plant-microbe interactions. The recognition of microbe-derived molecules activates Ca2+ channels or Ca2+ pumps that trigger a transient increase in Ca2+ in the cytoplasm. The Ca2+ binding proteins (such as CBL, CPK, CaM, and CML), known as Ca2+ sensors, relay the Ca2+ signal into down-stream signaling events, e.g., activating transcription factors in the nucleus. For example, CaM and CML decode the Ca2+ signals to the CaM/CML-binding protein, especially CaM-binding transcription factors (AtSRs/CAMTAs), to induce the expressions of immune-related genes. In this review, we discuss the recent breakthroughs in down-stream Ca2+ signaling as a dynamic process, subjected to continuous variation and gradual change. AtSR1/CAMTA3 is a CaM-mediated transcription factor that represses plant immunity in non-stressful environments. Stress-triggered Ca2+ spikes impact the Ca2+-CaM-AtSR1 complex to control plant immune response. We also discuss other regulatory mechanisms in which Ca2+ signaling activates CPKs and MAPKs cascades followed by regulating the function of AtSR1 by changing its stability, phosphorylation status, and subcellular localization during plant defense.

Sign in / Sign up

Export Citation Format

Share Document