scholarly journals Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice.

1986 ◽  
Vol 6 (7) ◽  
pp. 2624-2631 ◽  
Author(s):  
M Shani

A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.

1986 ◽  
Vol 6 (7) ◽  
pp. 2624-2631
Author(s):  
M Shani

A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice.


1994 ◽  
Vol 269 (27) ◽  
pp. 18072-18075
Author(s):  
S. Hsu-Wong ◽  
S.D. Katchman ◽  
I. Ledo ◽  
M. Wu ◽  
J. Khillan ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 3785-3792
Author(s):  
C J Petropoulos ◽  
M P Rosenberg ◽  
N A Jenkins ◽  
N G Copeland ◽  
S H Hughes

We have generated transgenic mouse lines that carry the promoter region of the chicken skeletal muscle alpha (alpha sk) actin gene linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. In adult mice, the pattern of transgene expression resembled that of the endogenous alpha sk actin gene. In most of the transgenic lines, high levels of CAT activity were detected in striated muscle (skeletal and cardiac) but not in the other tissues tested. In striated muscle, transcription of the transgene was initiated at the normal transcriptional start site of the chicken alpha sk actin gene. The region from nucleotides -191 to +27 of the chicken alpha sk actin gene was sufficient to direct the expression of CAT in striated muscle of transgenic mice. These observations suggest that the mechanism of tissue-specific actin gene expression is well conserved in higher vertebrate species.


2000 ◽  
Vol 275 (9) ◽  
pp. 6368-6374 ◽  
Author(s):  
Hitoshi Shirakawa ◽  
David Landsman ◽  
Yuri V. Postnikov ◽  
Michael Bustin

1984 ◽  
Vol 4 (11) ◽  
pp. 2498-2508
Author(s):  
K S Chang ◽  
W E Zimmer ◽  
D J Bergsma ◽  
J B Dodgson ◽  
R J Schwartz

Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.


2009 ◽  
Vol 10 (1) ◽  
pp. 68 ◽  
Author(s):  
Indrek Koppel ◽  
Tamara Aid-Pavlidis ◽  
Kaur Jaanson ◽  
Mari Sepp ◽  
Priit Pruunsild ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 3785-3792 ◽  
Author(s):  
C J Petropoulos ◽  
M P Rosenberg ◽  
N A Jenkins ◽  
N G Copeland ◽  
S H Hughes

We have generated transgenic mouse lines that carry the promoter region of the chicken skeletal muscle alpha (alpha sk) actin gene linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. In adult mice, the pattern of transgene expression resembled that of the endogenous alpha sk actin gene. In most of the transgenic lines, high levels of CAT activity were detected in striated muscle (skeletal and cardiac) but not in the other tissues tested. In striated muscle, transcription of the transgene was initiated at the normal transcriptional start site of the chicken alpha sk actin gene. The region from nucleotides -191 to +27 of the chicken alpha sk actin gene was sufficient to direct the expression of CAT in striated muscle of transgenic mice. These observations suggest that the mechanism of tissue-specific actin gene expression is well conserved in higher vertebrate species.


2004 ◽  
Vol 56 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Pankaj B. Agrawal ◽  
Corinne D. Strickland ◽  
Charles Midgett ◽  
Ana Morales ◽  
Daniel E. Newburger ◽  
...  

1990 ◽  
Vol 18 (18) ◽  
pp. 5465-5472 ◽  
Author(s):  
Diana M. Shih ◽  
Robert J. Wall ◽  
Steven G. Shapiro

Sign in / Sign up

Export Citation Format

Share Document