chimeric gene
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 1)

Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 850
Author(s):  
Surapong Koonpaew ◽  
Challika Kaewborisuth ◽  
Kanjana Srisutthisamphan ◽  
Asawin Wanitchang ◽  
Theeradej Thaweerattanasinp ◽  
...  

The use of virus-vectored platforms has increasingly gained attention in vaccine development as a means for delivering antigenic genes of interest into target hosts. Here, we describe a single-cycle influenza virus-based SARS-CoV-2 vaccine designated as scPR8-RBD-M2. The vaccine utilizes the chimeric gene encoding 2A peptide-based bicistronic protein cassette of the SARS-CoV-2 receptor-binding domain (RBD) and influenza matrix 2 (M2) protein. The C-terminus of the RBD was designed to link with the cytoplasmic domain of the influenza virus hemagglutinin (HA) to anchor the RBD on the surface of producing cells and virus envelope. The chimeric RBD-M2 gene was incorporated in place of the HA open-reading frame (ORF) between the 3′ and 5′ UTR of HA gene for the virus rescue in MDCK cells stably expressing HA. The virus was also constructed with the disrupted M2 ORF in segment seven to ensure that M2 from the RBD-M2 was utilized. The chimeric gene was intact and strongly expressed in infected cells upon several passages, suggesting that the antigen was stably maintained in the vaccine candidate. Mice inoculated with scPR8-RBD-M2 via two alternative prime-boost regimens (intranasal-intranasal or intranasal-intramuscular routes) elicited robust mucosal and systemic humoral immune responses and cell-mediated immunity. Notably, we demonstrated that immunized mouse sera exhibited neutralizing activity against pseudotyped viruses bearing SARS-CoV-2 spikes from various variants, albeit with varying potency. Our study warrants further development of a replication-deficient influenza virus as a promising SARS-CoV-2 vaccine candidate.


2021 ◽  
Vol 22 (S10) ◽  
Author(s):  
Yu-Ching Wu ◽  
Chia-I Chen ◽  
Peng-Ying Chen ◽  
Chun-Hung Kuo ◽  
Yi-Hsuan Hung ◽  
...  

Abstract Background Glucocorticoid-remediable aldosteronism (GRA) is a form of heritable hypertension caused by a chimeric fusion resulting from unequal crossing over between 11β‐hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), which are two genes with similar sequences. Different crossover patterns of the CYP11B1 and CYP11B2 chimeric genes may be associated with a variety of clinical presentations. It is therefore necessary to develop an efficient approach for identifying the differences between the hybrid genes of a patient with GRA. Results We developed a long-read analysis pipeline named GRAde (GRA deciphering), which utilizes the nonidentical bases in the CYP11B1 and CYP11B2 genomic sequences to identify and visualize the chimeric form. We sequenced the polymerase chain reaction (PCR) products of the CYP11B1/CYP11B2 chimeric gene from 36 patients with GRA using the Nanopore MinION device and analyzed the sequences using GRAde. Crossover events were identified for 30 out of the 36 samples. The crossover sites appeared in the region exhibiting high sequence similarity between CYP11B1 and CYP11B2, and 53.3% of the cases were identified as having a gene conversion in intron 2. More importantly, there were six cases for whom the PCR products indicated a chimeric gene, but the GRAde results revealed no crossover pattern. The crossover regions were further verified by Sanger sequencing analysis. Conclusions PCR-based target enrichment followed by long-read sequencing is an efficient and precise approach to dissecting complex genomic regions, such as those involved in GRA mutations, which could be directly applied to clinical diagnosis. The scripts of GRAde are available at https://github.com/hsu-binfo/GRAde.


2020 ◽  
Vol 11 ◽  
Author(s):  
Stéphanie Jacquet ◽  
Dominique Pontier ◽  
Lucie Etienne

Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family, including HERC5 and HERC6, which have probably diversified through complex evolutionary history in mammals. Here, we performed mammalian-wide phylogenetic and genomic analyses of HERC5 and HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls, and carnivores—the top five representative groups of mammalian evolution. We found that HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past and widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface, targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat immunity. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.


2020 ◽  
Vol 65 (3) ◽  
pp. 253-280
Author(s):  
A. O. Abdullaev ◽  
E. A. Stepanova ◽  
T. V. Makarik ◽  
E. Y. Nikulina ◽  
S. A. Treglazova ◽  
...  

Introduction. The pathogenesis of myeloproliferative neoplasms is associated with the chimeric gene BCR-ABL1 or with one of the driver mutations in the genes JAK2, MPL and CALR (Calreticulin). However, the classifi cation of the World Health Organization lists no myeloid neoplasms with more than one driver genetic abnormality. Aim. To search for mutations in the genes JAK2, MPL and CALR in patients with BCR-ABL1-positive chronic myeloid leukemia (CML), as well as to evaluate the kinetics of the discovered mutations during tyrosine kinase inhibitor (TKI) therapy. Materials and methods. mRNA and DNA samples isolated from blood and bone marrow cells of 567 CML patients, who underwent periodic monitoring of the BCR-ABL1 transcript level over the 2012–2019 period were included in the study The BCR-ABL1 transcript level was determined using a highly sensitive quantitative real-time polymerase chain reaction. The mutations JAK2V617F and MPLW515L/K were detected using real-time quantitative allele-specifi c polymerase chain reaction. Mutations in the CALR gene were investigated using fragment analysis followed by Sanger sequencing. Results. The combination of the BCR-ABL1, JAK2 and CALR gene mutations among CML patients receiving TKIs was 1.23 % (7/567). Out of these, the combination of BCR-ABL1 with JAK2V617F and the combination of BCR-ABL1 with CALR gene mutations were detected in 0.88 % (5/567) and 0.35 % (2/567) of cases, respectively. During TKI therapy, in 5 out of 7 patients, the level of BCR-ABL1 reached major molecular response (MR). In 4 of these patients, the therapy was discontinued. These patients are currently in molecular remission. In the remaining 2 patients, major MR was not achieved, despite the use of second-generation TKI preparations. Conclusions. The combination of the BCR-ABL1 chimeric gene with gene mutations Jak2 or CALR was a rare event and amounted to 0.88 and 0.35 % of cases, respectively. The combination of BCR-ABL1 with Jak2V617F and CALR mutations does not always impede the achievement of major MR.


2020 ◽  
Author(s):  
Stéphanie Jacquet ◽  
Dominique Pontier ◽  
Lucie Etienne

AbstractThe antiviral innate immunity in mammals has evolved very rapidly in response to pathogen selective pressure. Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family including interferon-inducible antiviral effectors. Notably, HERC5 inhibits divergent viruses through the conjugation of ISG15 to diverse proteins-termed as ISGylation. Though HERC6 is the most closely-related protein of HERC5, it lacks the ISGylation function in humans. Interestingly, HERC6 is the main E3-ligase of ISG15 in mice, suggesting adaptive changes in HERC6 with implications in the innate immunity. Therefore, HERC5 and HERC6 have probably diversified through complex evolutionary history in mammals, and such characterization would require an extensive survey of mammalian evolution. Here, we performed mammalian-wide and lineage-specific phylogenetic and genomic analyses of HERC5 and HERC6. We used 83 orthologous sequences from bats, rodents, primates, artiodactyls and carnivores – the top five representative groups of mammalian evolution and the main hosts of viral diversity. We found that mammalian HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past genetic arms-races with viral pathogens. Importantly, we found accelerated evolution in the HERC6 spacer domain, suggesting that it might be a pathogen-mammal interface, targeting a viral protein and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat antiviral innate immunity. Altogether, we found major genetic innovations in mammalian HERC5 and HERC6. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.


2020 ◽  
Vol 10 (5) ◽  
Author(s):  
Nikhil Patkar ◽  
Prasanna Bhanshe ◽  
Sweta Rajpal ◽  
Swapnali Joshi ◽  
Shruti Chaudhary ◽  
...  

2020 ◽  
Vol 39 (6) ◽  
pp. 723-736
Author(s):  
Huifang Cen ◽  
Yanrong Liu ◽  
Dayong Li ◽  
Kexin Wang ◽  
Yunwei Zhang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanli Zhou ◽  
Chengjun Zhang

AbstractChimeric retroposition is a process by which RNA is reverse transcribed and the resulting cDNA is integrated into the genome along with flanking sequences. This process plays essential roles and drives genome evolution. Although the origination rates of chimeric retrogenes are high in plant genomes, the evolutionary patterns of the retrogenes and their parental genes are relatively uncharacterised in the rice genome. In this study, we evaluated the substitution ratio of 24 retrogenes and their parental genes to clarify their evolutionary patterns. The results indicated that seven gene pairs were under positive selection. Additionally, soon after new chimeric retrogenes were formed, they rapidly evolved. However, an unexpected pattern was also revealed. Specifically, after an undefined period following the formation of new chimeric retrogenes, the parental genes, rather than the new chimeric retrogenes, rapidly evolved under positive selection. We also observed that one retro chimeric gene (RCG3) was highly expressed in infected calli, whereas its parental gene was not. Finally, a comparison of our Ka/Ks analysis with that of other species indicated that the proportion of genes under positive selection is greater for chimeric retrogenes than for non-chimeric retrogenes in the rice genome.


Sign in / Sign up

Export Citation Format

Share Document