scholarly journals Translation and membrane insertion of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus.

1987 ◽  
Vol 7 (4) ◽  
pp. 1386-1392 ◽  
Author(s):  
C Wilson ◽  
R Gilmore ◽  
T Morrison

The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses is likely in the unusual class of glycoproteins with the amino terminus cytoplasmic and the carboxy terminus lumenal or external to the cell. The properties of the membrane insertion of the HN protein of Newcastle disease virus, a prototype paramyxovirus, were explored in wheat germ extracts containing microsomal membranes. HN protein was inserted into membranes cotranslationally, resulting in a glycosylated protein completely resistant to trypsin and proteinase K digestion. No detectable posttranslation insertion occurred. Insertion required signal recognition particle. Signal recognition particle in the absence of membranes inhibited HN protein synthesis. Comparisons of the trypsin digestion products of the HN protein made in the cell-free system with newly synthesized HN protein from infected cells showed that the cell-free product was in a conformation different from that of the pulse-labeled protein in infected cells. First, trypsin digestion of intact membranes from infected cells reduced the size of the 74,000-dalton HN protein by approximately 1,000 daltons, whereas trypsin digestion of HN protein made in the cell-free system had no effect on the size of the protein. Second, trypsin digestion of Triton X-100-permeabilized membranes isolated from infected cells resulted in a 67,000-dalton trypsin resistant HN protein fragment. A trypsin-resistant core of comparable size was not present in the digestion products of in-vitro-synthesized HN protein. Evidence is presented that the newly synthesized HN protein in infected cels contain intramolecular disulfide bonds not present in the cell-free product.

1987 ◽  
Vol 7 (4) ◽  
pp. 1386-1392
Author(s):  
C Wilson ◽  
R Gilmore ◽  
T Morrison

The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses is likely in the unusual class of glycoproteins with the amino terminus cytoplasmic and the carboxy terminus lumenal or external to the cell. The properties of the membrane insertion of the HN protein of Newcastle disease virus, a prototype paramyxovirus, were explored in wheat germ extracts containing microsomal membranes. HN protein was inserted into membranes cotranslationally, resulting in a glycosylated protein completely resistant to trypsin and proteinase K digestion. No detectable posttranslation insertion occurred. Insertion required signal recognition particle. Signal recognition particle in the absence of membranes inhibited HN protein synthesis. Comparisons of the trypsin digestion products of the HN protein made in the cell-free system with newly synthesized HN protein from infected cells showed that the cell-free product was in a conformation different from that of the pulse-labeled protein in infected cells. First, trypsin digestion of intact membranes from infected cells reduced the size of the 74,000-dalton HN protein by approximately 1,000 daltons, whereas trypsin digestion of HN protein made in the cell-free system had no effect on the size of the protein. Second, trypsin digestion of Triton X-100-permeabilized membranes isolated from infected cells resulted in a 67,000-dalton trypsin resistant HN protein fragment. A trypsin-resistant core of comparable size was not present in the digestion products of in-vitro-synthesized HN protein. Evidence is presented that the newly synthesized HN protein in infected cels contain intramolecular disulfide bonds not present in the cell-free product.


1975 ◽  
Vol 47 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Elena I. Sklyanskaya ◽  
N. V. Kaverin ◽  
Natalia V. Gribkova ◽  
Inna V. Tsvetkova ◽  
M. A. Lipkind

1977 ◽  
Vol 35 (3) ◽  
pp. 439-453 ◽  
Author(s):  
B. B. Spanier ◽  
M. A. Bratt

1990 ◽  
Vol 10 (2) ◽  
pp. 449-457
Author(s):  
C Wilson ◽  
R Gilmore ◽  
T Morrison

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a type II glycoprotein oriented in the plasma membrane with its amino terminus in the cytoplasm and its carboxy terminus external to the cell. We have previously shown that the membrane insertion of HN protein requires signal recognition particle SRP, occurs cotranslationally, and utilizes the same GTP-dependent step that has been described for secretory proteins, type I proteins, and multispanning proteins (C. Wilson, R. Gilmore, and T. Morrison, Mol. Cell. Biol. 7:1386-1392, 1987; C. Wilson, T. Connolly, T. Morrison, and R. Gilmore, J. Cell Biol. 107:69-77, 1988). The role of the amino-terminal cytoplasmic domain in the faithful membrane insertion of this type II protein was explored by characterizing the membrane integration of a mutant lacking 23 of the 26 amino acids of the cytoplasmic domain. The mutant protein was able to interact with SRP, resulting in translation inhibition, membrane targeting, and membrane translocation, but the efficiency of translocation was considerably lower than for the wild-type HN protein. In addition, a significant proportion of the mutant protein synthesized in the presence of SRP and microsomal membranes was associated with the membrane in an EDTA- and alkali-insensitive manner yet integrated into membranes with its carboxy-terminal domain on the cytoplasmic side of membrane vesicles. Membrane-integrated molecules with this reverse orientation were not detected when the mutant protein was synthesized in the absence of SRP or a functional SRP receptor. Truncated mRNAs encoding amino-terminal segments of the wild-type and mutant proteins were translated to prepare ribosomes bearing arrested nascent chains. The arrested mutant nascent chain, in contrast to the wild-type nascent chain, was also able to insert into membranes in a GTP- and SRP-independent manner. Results suggest that the cytoplasmic domain plays a role in the proper membrane insertion of this type II glycoprotein.


Autophagy ◽  
2021 ◽  
pp. 1-19
Author(s):  
Yabin Gong ◽  
Ning Tang ◽  
Panrao Liu ◽  
Yingjie Sun ◽  
Shanxin Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document