Cysteine residues in the zinc finger and amino acids adjacent to the finger are necessary for DNA binding by the LAC9 regulatory protein of Kluyveromyces lactis

1988 ◽  
Vol 8 (9) ◽  
pp. 3726-3733
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought.

1988 ◽  
Vol 8 (9) ◽  
pp. 3726-3733 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860 ◽  
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


1991 ◽  
Vol 11 (9) ◽  
pp. 4356-4362 ◽  
Author(s):  
M N Kanaan ◽  
G A Marzluf

cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.


1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.


1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995 ◽  
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.


1991 ◽  
Vol 11 (9) ◽  
pp. 4356-4362
Author(s):  
M N Kanaan ◽  
G A Marzluf

cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


Development ◽  
2002 ◽  
Vol 129 (11) ◽  
pp. 2761-2772
Author(s):  
Ann K. Corsi ◽  
Thomas M. Brodigan ◽  
Erik M. Jorgensen ◽  
Michael Krause

Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, has defects that occur earlier in the mesodermal lineage than a previously studied null allele of the gene. The semidominant allele has a charge change (E29K) in the basic DNA-binding domain of CeTwist. Surprisingly, the mutant protein retains DNA-binding activity as both a homodimer and a heterodimer with its partner E/Daughterless (CeE/DA). However, the mutant protein blocks the activation of the promoter of a target gene. Therefore, the mutant CeTwist may cause cellular defects as a dominant negative protein by binding to target promoters as a homo- or heterodimer and then blocking transcription. Similar phenotypes as those caused by the E29K mutation were observed when amino acid substitutions in the DNA-binding domain that are associated with the human Saethre-Chotzen syndrome were engineered into the C. elegans protein. These data suggest that Saethre-Chotzen syndrome may be caused, in some cases, by dominant negative proteins, rather than by haploinsufficiency of the locus.


Sign in / Sign up

Export Citation Format

Share Document