scholarly journals The Bacillus cereus Group: Bacillus Species with Pathogenic Potential

2019 ◽  
Vol 7 (3) ◽  
Author(s):  
Monika Ehling-Schulz ◽  
Didier Lereclus ◽  
Theresa M. Koehler
2019 ◽  
pp. 875-902 ◽  
Author(s):  
Monika Ehling-Schulz ◽  
Didier Lereclus ◽  
Theresa M. Koehler

2006 ◽  
Vol 69 (8) ◽  
pp. 2002-2006 ◽  
Author(s):  
MARGARET A. JUERGENSMEYER ◽  
BRUCE A. GINGRAS ◽  
LAWRENCE RESTAINO ◽  
ELON W. FRAMPTON

A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholinespecific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37°C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.


2006 ◽  
Vol 89 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Niels Bohse Hendriksen ◽  
Bjarne Munk Hansen ◽  
Jens Efsen Johansen

1991 ◽  
Vol 74 (4) ◽  
pp. 649-651
Author(s):  
Stanley M Harmon ◽  
Donald A Kautter ◽  
Gayle Lancette

Abstract The use of the lipid globule stain to aid in differentiating the Bacillus cereus group (i.e., B. cereus, B. cereus var. mycoldes, and B. thurlnglensls) from other Bacillus species was investigated. Smears from colonies grown on suitable agar were made on precleaned slides, stained, and examined microscopically for characteristic deep blue lipid globules. The study included a total of 649 cultures of Bacillus species plus 143 Incompletely characterized Bacillus isolates from food. Only B. cereus, B. cereus var. mycoldes, B. thurlnglensls, B. megaterlum, and B. sphaerlcus were consistently positive for lipid globules, although at times, a few cells of B. aneurlnolyilcus and B. thlamlnolytlcus were also positive. The lipid globule stain procedure Is of value In differentiating Bacillus species, especially when performed by an experienced analyst and used in conjunction with tests for cell and spore morphology.


2019 ◽  
Vol 17 ◽  
Author(s):  
Farzane Kargar ◽  
Mojtaba Mortazavi ◽  
Mahmood Maleki ◽  
Masoud Torkzadeh Mahani ◽  
Younes Ghasemi ◽  
...  

Aims: The purpose of this study was to screen the bacteria producing cellulase enzymes and their bioinformatics studies. Background: Cellulose is a long-chain polymer of glucose that hydrolyzes by cellulases to glucose molecules. In order to design the new biotechnological applications, some strategies have been used as increasing the efficiency of enzyme production, generating cost-effective enzymes, producing stable enzymes and identification of new strains. Objective: On the other hand, some bacteria special features have made them suitable candidates for the identification of the new source of enzymes. In this regard, some native strains of bacteria were screened. Method: These bacteria were grown on a culture containing the liquid M9 media containing CMC to ensure the synthesis of cellulase. The formation of a clear area in the culture medium indicated decomposition of cellulose. In the following, the DNA of these bacteria were extracted and their 16S rDNA genes were amplified. Result: The results show that nine samples were able to synthesize cellulase. In following, these strains were identified using 16S rDNA. The results show that these screened bacteria belonged to the Bacillus sp., Alcaligenes sp., Alcaligenes sp., and Enterobacter sp.conclusionThe enzyme activity analysis shows that the Bacillus toyonensis, Bacillus sp. strain XA15-411 Bacillus cereus have produced the maximum yield of cellulases. However, these amounts of enzyme production in these samples are not proportional to their growth rate. As the bacterial growth chart within 4 consecutive days shows that the Alcaligenes sp. Bacillus cereus, Bacillus toyonensis, Bacillus sp. strain XA15-411 have a maximum growth rate. The study of the phylogenetic tree also shows that Bacillus species are more abundant in the production of cellulase enzyme. These bioinformatics analyses show that the Bacillus species have different evolutionary relationships and evolved in different evolutionary time. Other: However, for maximum cellulase production by this bacteria, some information as optimum temperature, optimum pH, carbon and nitrogen sources are needed for the ideal formulation of media composition. The cellulase production is closely controlled in microorganisms and the cellulase yields appear to depend on a variety of factors. However, the further studies are needed for cloning, purification and application of these new microbial cellulases in the different commercial fields as in food, detergent, and pharmaceutical, paper, textile industries and also various chemical industries. However, these novel enzymes can be further engineered through rational design or using random mutagenesis techniques.


LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110853
Author(s):  
Yiying Huang ◽  
Steve H. Flint ◽  
Shubo Yu ◽  
Yu Ding ◽  
Jon S. Palmer

2007 ◽  
Vol 70 (12) ◽  
pp. 2774-2781 ◽  
Author(s):  
I-CHEN YANG ◽  
DANIEL YANG-CHIH SHIH ◽  
JAN-YI WANG ◽  
TZU-MING PAN

Members of the Bacillus cereus group may produce diarrheal enterotoxins and could be potential hazards if they enter the food chain. Therefore, a method capable of detecting all the species in the B. cereus group rather than B. cereus alone is important. We selected nhe as the target and developed a real-time PCR assay to quantify enterotoxigenic strains of the B. cereus group. The real-time PCR assay was evaluated with 60 B. cereus group strains and 28 others. The assay was also used to construct calibration curves for different food matrices and feces. The assay has an excellent quantification capacity, as proved by its linearity (R2 > 0.993), wide dynamic quantification range (102 to 107 CFU/g for cooked rice and chicken, 103 to 107 CFU/ml for milk, and 104 to 107 CFU/g for feces), and adequate relative accuracy (85.5 to 101.1%). For the low-level contaminations, a most-probable-number real-time PCR assay was developed that could detect as low as 100 CFU/ml. Both assays were tested with real food samples and shown to be considerably appropriate for B. cereus group detection and quantification.


Sign in / Sign up

Export Citation Format

Share Document