A Selective Chromogenic Agar That Distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis

2006 ◽  
Vol 69 (8) ◽  
pp. 2002-2006 ◽  
Author(s):  
MARGARET A. JUERGENSMEYER ◽  
BRUCE A. GINGRAS ◽  
LAWRENCE RESTAINO ◽  
ELON W. FRAMPTON

A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholinespecific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37°C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.

2007 ◽  
Vol 53 (6) ◽  
pp. 673-687 ◽  
Author(s):  
G.T. Vilas-Bôas ◽  
A.P.S. Peruca ◽  
O.M.N. Arantes

Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.


2006 ◽  
Vol 188 (21) ◽  
pp. 7711-7711 ◽  
Author(s):  
Cliff S. Han ◽  
Gary Xie ◽  
Jean F. Challacombe ◽  
Michael R. Altherr ◽  
Smriti S. Bhotika ◽  
...  

2019 ◽  
pp. 875-902 ◽  
Author(s):  
Monika Ehling-Schulz ◽  
Didier Lereclus ◽  
Theresa M. Koehler

2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Ivan Erill ◽  
Steven M. Caruso

The genomes of two double-stranded DNA (dsDNA) bacteriophages isolated on Bacillus thuringiensis show similarity to previously sequenced phages and provide evidence of the mosaicism of phage genomes.


2013 ◽  
Vol 79 (12) ◽  
pp. 3860-3863 ◽  
Author(s):  
Jinshui Zheng ◽  
Donghai Peng ◽  
Xiaoling Song ◽  
Lifang Ruan ◽  
Jacques Mahillon ◽  
...  

ABSTRACTcsaBgene analysis clustered 198 strains ofBacillus anthracis,Bacillus cereus, andBacillus thuringiensisinto two groups related to mammalian and insect hosts, respectively. Mammal-related group I strains also have more S-layer homology (SLH) protein genes than group II strains. This indicates thatcsaB-based differentiation reflects selective pressure from animal hosts.


Sign in / Sign up

Export Citation Format

Share Document