pathogenic potential
Recently Published Documents





2023 ◽  
Vol 83 ◽  
L. Ludwig ◽  
J. Y. Muraoka ◽  
C. Bonacorsi ◽  
F. C. Donofrio

Abstract Bats are important for the homeostasis of ecosystems and serve as hosts of various microorganisms including bacteria, viruses, and fungi with pathogenic potential. This study aimed to isolate fungi from biological samples obtained from bats captured in the city of Sinop (state of Mato Grosso, Brazil), where large areas of deforestation exist due to urbanization and agriculture. On the basis of the flow of people and domestic animals, 48 bats were captured in eleven urban forest fragments. The samples were processed and submitted to microbiological cultures, to isolate and to identify the fungal genera. Thirty-four (70.83%) of the captured bats were positive for fungi; 18 (37.5%) and 16 (33.33%) of these bats were female and male, respectively. Penicillium sp., Scopulariopsis sp., Fusarium sp., Aspergillus sp., Alternaria sp., Cryptococcus sp., Trichosporon sp., and Candida sp., which may cause opportunistic infections, were isolated. The bat species with the highest number of fungal isolates was Molossus molossus: 21 isolates (43.8%). According to our results, bats captured in urban forest fragments in Sinop harbor pathogenic fungi, increasing the risk of opportunistic fungal infections in humans and domestic animals.

2022 ◽  
Vol 12 (1) ◽  
Katarina Persson ◽  
Ulrika Petersson ◽  
Charlotte Johansson ◽  
Isak Demirel ◽  
Robert Kruse

AbstractUropathogenic Escherichia coli (UPEC) may undergo a cyclic cascade of morphological alterations that are believed to enhance the potential of UPEC to evade host responses and re-infect host cell. However, knowledge on the pathogenic potential and host activation properties of UPEC during the morphological switch is limited. Microarray analysis was performed on mRNA isolated from human bladder epithelial cells (HBEP) after exposure to three different morphological states of UPEC (normal coliform, filamentous form and reverted form). Cells stimulated with filamentous bacteria showed the lowest number of significant gene alterations, although the number of enriched gene ontology classes was high suggesting diverse effects on many different classes of host genes. The normal coliform was in general superior in stimulating transcriptional activity in HBEP cells compared to the filamentous and reverted form. Top-scored gene entities activated by all three morphological states included IL17C, TNFAIP6, TNF, IL20, CXCL2, CXCL3, IL6 and CXCL8. The number of significantly changed canonical pathways was lower in HBEP cells stimulated with the reverted form (32 pathways), than in cells stimulated with the coliform (83 pathways) or filamentous bacteria (138 pathways). A host cell invasion assay showed that filamentous bacteria were unable to invade bladder cells, and that the number of intracellular bacteria was markedly lower in cells infected with the reverted form compared to the coliform. In conclusion, the morphological state of UPEC has major impact on the host bladder response both when evaluating the number and the identity of altered host genes and pathways.

2022 ◽  
Vol 10 (1) ◽  
pp. 126
Antonio Lozano-León ◽  
Carlos García-Omil ◽  
Rafael R. Rodríguez-Souto ◽  
Alexandre Lamas ◽  
Alejandro Garrido-Maestu

Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.

2022 ◽  
Christopher Nelke ◽  
Marianna Spatola ◽  
Christina B. Schroeter ◽  
Heinz Wiendl ◽  
Jan D. Lünemann

AbstractAutoantibodies are increasingly recognized for their pathogenic potential in a growing number of neurological diseases. While myasthenia gravis represents the prototypic antibody (Ab)-mediated neurological disease, many more disorders characterized by Abs targeting neuronal or glial antigens have been identified over the past two decades. Depletion of humoral immune components including immunoglobulin G (IgG) through plasma exchange or immunoadsorption is a successful therapeutic strategy in most of these disease conditions. The neonatal Fc receptor (FcRn), primarily expressed by endothelial and myeloid cells, facilitates IgG recycling and extends the half-life of IgG molecules. FcRn blockade prevents binding of endogenous IgG to FcRn, which forces these antibodies into lysosomal degradation, leading to IgG depletion. Enhancing the degradation of endogenous IgG by FcRn-targeted therapies proved to be a powerful therapeutic approach in patients with generalized MG and is currently being tested in clinical trials for several other neurological diseases including autoimmune encephalopathies, neuromyelitis optica spectrum disorders, and inflammatory neuropathies. This review illustrates mechanisms of FcRn-targeted therapies and appraises their potential to treat neurological diseases.

2022 ◽  
Fatemeh Rahimi Gharemirshamloo ◽  
Ranabir Majumder ◽  
Kourosh Bamdad ◽  
Fateme Frootan ◽  
Cemal Un

Abstract The Human Prion protein gene (PRNP) is mapped to short arm of chromosome 20 (20pter-12). Prion disease is associated with mutations in the Prion Protein encoding gene sequence. The mutations that occur in the prion protein could be divided into two types based on their influence on pathogenic potential: 1. Mutations that cause disease. 2. Disease-resistance mutations. Earlier studies found that the mutation G127V in the PRNP increases protein stability, whereas the mutation E200K, which has the highest mutation rate in the Prion protein, causes Creutzfeldt–Jakob disease (CJD) in humans and induces protein aggregation. We used a variety of bioinformatic algorithms, including SIFT, PolyPhen, I-Mutant, PhD-SNP, and SNP&GO, to predict the association of the E200K mutation with Prion disease. MD simulation is performed and graphs for RMSD, RMSF, Rg, DSSP, PCA, porcupine and FEL are generated to confirm and prove the stability of the wild type and mutant protein structures. The protein is analyzed for aggregation, and the results indicates more fluctuations in the protein structure during the simulation by the E200K mutation, however the G127V mutation makes protein structure stable against aggregation during the simulation.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0259386
Devon W. Kavanaugh ◽  
Constance Porrini ◽  
Rozenn Dervyn ◽  
Nalini Ramarao

Bacillus cereus is a spore forming bacteria recognized among the leading agents responsible for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic human pathogen inducing local and systemic infections. The real incidence of such infection is likely underestimated and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We have recently analyzed a large strain collection of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified among the leading candidates. This family of proteins has been demonstrated to be involved in the virulence of several bacterial species. The relevant gene was knocked out to elucidate its function with regards to resistance to host innate immune response, both in vitro and in vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in vivo toxicity. These properties may explain the pathogenic potential of strains carrying this newly identified virulence factor.

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 59
Katarzyna Nawrot-Chorabik ◽  
Małgorzata Sułkowska ◽  
Małgorzata Osmenda ◽  
Vasyl Mohytych ◽  
Ewa Surówka ◽  

Fraxinus excelsior L. is threatened by a variety of environmental factors causing a decline of the species. The most important biotic factors negatively affecting the condition of the F. excelsior population are fungi such as the pathogen Hymenoscyphus fraxineus. Abiotic factors with potentially harmful effect to the F. excelsior population are the accumulation of heavy metals and salinity in soils. Thus, the aim of this study was to investigate the impact of selected biotic and abiotic stress factors to determine which of them pose a threat to European ash. The study was conducted using in vitro techniques based on callus and seedlings regenerated via indirect organogenesis. Tissue cultures exclude the influence of other factors, including the environmental impact on ash extinction. The results confirmed very strong pathogenic potential of H. fraxineus in which after 14 days the callus tissue cells died as the tissue failed to activate its defense mechanisms. Experiments showed the high toxicity of cadmium in concentration of 0.027 mmol/L. Salinity caused the activity of oxidation enzymes to vary among seedlings and calluses in the control suggesting the enzymes play a role in controlling the morphogenetic development of tissue cultures.

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 51
Vojtěch Kovařovic ◽  
Ivo Sedláček ◽  
Petr Petráš ◽  
Stanislava Králová ◽  
Ivana Mašlaňová ◽  

Staphylococci from the Staphylococcus intermedius-Staphylococcus hyicus species group include numerous animal pathogens and are an important reservoir of virulence and antimicrobial resistance determinants. Due to their pathogenic potential, they are possible causative agents of zoonoses in humans; therefore, it is important to address the properties of these strains. Here we used a polyphasic taxonomic approach to characterize the coagulase-negative staphylococcal strain NRL/St 03/464T, isolated from the nostrils of a healthy laboratory rat during a microbiological screening of laboratory animals. The 16S rRNA sequence, MALDI-TOF mass spectrometry and positive urea hydrolysis and beta-glucuronidase tests clearly distinguished it from closely related Staphylococcus spp. All analyses have consistently shown that the closest relative is Staphylococcus chromogenes; however, values of digital DNA-DNA hybridization <35.3% and an average nucleotide identity <81.4% confirmed that the analyzed strain is a distinct Staphylococcus species. Whole-genome sequencing and expert annotation of the genome revealed the presence of novel variable genetic elements, including two plasmids named pSR9025A and pSR9025B, prophages, genomic islands and a composite transposon that may confer selective advantages to other bacteria and enhance their survival. Based on phenotypic, phylogenetic and genomic data obtained in this study, the strain NRL/St 03/464T (= CCM 9025T = LMG 31873T = DSM 111348T) represents a novel species with the suggested name Staphylococcus ratti sp. nov.

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 115
Mahmoud Elashiry ◽  
Ranya Elsayed ◽  
Christopher W. Cutler

Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the ‘directors’ of the immune response, are receiving favorable safety and tolerance profiles in phase I and II clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes (EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen species and DNA damage. Such cell stressors can promote premature senescence in young cells through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune therapy, as well as the pathogenic potential of endogenous DC exosomes.

Sign in / Sign up

Export Citation Format

Share Document